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Outline

1. Approximate polynomials satisfiability

• Application: verifying hitting-sets for VP

2. Algebraic independence testing over finite fields

A common theme appeared in both problems is the study of the Zariski

closure Im(f) of the image of a polynomial map f.
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Introduction

Polynomials satisfiability is a well studied problem in computer science.

Polynomials satisfiability (PS)

Given f1, f2, . . . , fm 2 F[X1, . . . ,Xn

], determine if f1 = f2 = · · · = f

m

= 0

have a common solution over F.

Known to be NP-hard and in PSPACE [Brownawell ’87, Kollár ’88].

Assuming GRH, PS is in PH when F = Q [Koiran ’96].
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Introduction

A polynomial system with no solution may have an approximate solution.

Example

The system X = XY � 1 = 0 has no solution. However, it has an

approximate solution {X = ✏,Y = 1/✏} (let ✏ ! 0).

Approximate polynomials satisfiability (APS)

Given f1, f2, . . . , fm 2 F[X1, . . . ,Xn

], determine if f1 = f2 = · · · = f

m

= 0

have a common approximate solution, i.e., x1, . . . , xn 2 F[✏, ✏�1] such

that f
i

(x1, . . . , xn) 2 ✏F[✏] for i = 1, . . . ,m.

Example

Deciding if the tensor rank of a tensor T over F is  k is a PS instance.

Deciding if the border rank of T over F is  k is an APS instance.
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Previous results & our result

APS is NP-hard, but previously not known in PSPACE.

APS is in EXPSPACE by a Gröbner basis algorithm

[Derksen-Kemper ’02, Mulmuley ’12].

Theorem [GSS18]

APS 2 PSPACE.

4



Previous results & our result

APS is NP-hard, but previously not known in PSPACE.

APS is in EXPSPACE by a Gröbner basis algorithm
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Geometric reformulation of APS

f1, . . . , fm 2 F[X1, . . . ,Xn

] defines a polynomial map f : Fn ! Fm

.

Let V = Im(f), i.e., the Zariski closure of Im(f).

Note f1 = · · · = f

m

= 0 have a common solution in Fn

i↵ 0 2 Im(f).

Lemma

f1 = · · · = f

m

= 0 have a common approximate solution i↵ 0 2 Im(f).

The proof follows Lehmkuhl & Lickteig’s proof for border rank [LL89].

So APS is equivalent to the problem of deciding if 0 2 V = Im(f).
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Proof sketch

First compute dimV in PSPACE [Perron ’27, Csanky ’76].

Testing 0 2 V is easy if codimV = 0 or 1:

If codimV = 0, then V = Fm 3 0.

If codimV = 1, we use the fact 0 2 V , hX1, . . . ,Xm

i ◆ I (V )

, the polynomials in I (V ) have zero constant term.

As codimV = 1, I (V ) is a principal ideal, generated by a polynomial g of

degree deg(V ) Qm

i=1 deg(fi ) [Perron ’27].

Checking if g has zero constant term reduces to solving an

exponential-size linear equation system, which is in PSPACE [Csanky ’76].
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Proof sketch

When codimV > 1, we reduce to the case codimV = 1.

Idea: replace f1, . . . , fm by g1, . . . , gk , where k = dimV + 1 and each g

i

is a random linear combination of f
i

’s.

Geometrically, replacing f

i

’s by g

i

’s corresponds to replacing V ✓ Fm

by

V

0 := ⇡(V ) ✓ Fk

, where ⇡ : Fm ! Fk

is a random linear map.

We show that w.h.p. dimV

0 = dimV , which implies

codimV

0 = k � dimV = 1.
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Proof sketch

To prove that this is indeed a reduction, we also need to prove that

0 2 V

0 i↵ 0 2 V .

The “if” part is trivial. For the “only if” part, we want to prove:

assuming 0 62 V , then w.h.p 0 62 ⇡(V ).

The weaker statement 0 62 ⇡(V ) is equivalent to ⇡�1(0) \ V = ;.
This holds w.h.p since ⇡�1(0) is the intersection of k = dimV + 1

random hyperplanes.

However, this does not guarantee 0 62 ⇡(V ), because ⇡�1(0) and V can

get “infinitesimally close” and “meet at infinity”.

Solution: replacing the a�ne space Fm

by the projective space Pm.

Lemma [GSS18]

Assume 0 62 V . Then 0 62 ⇡(V ) if the projective closure of ⇡�1(0) and

that of V are disjoint, which holds with high probability.

8
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Verifying hitting-sets for VP



Hitting-sets for VP

Informally, VP is the class of polynomials approximated by arithmetic

circuits of polynomial size and polynomial degree.

Mulmuley (FOCS’12, J.AMS’17) considered the problem of constructing

small hitting-sets for VP.

Heintz & Schnorr [HS80] proved the existence of such small hitting sets.

While it is easy to enumerate the list of candidates for small hitting-sets,

it is not obvious how to verify a candidate is a hitting-set in PSPACE.

Mulmuley noted that it is in EXPSPACE.
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Hitting-sets for VP

Recently, Forbes and Shpilka (STOC ‘18) showed that small hitting-sets

for VPC can be constructed in PSPACE.

Their proof uses classical topology of euclidean spaces and does not

extend to positive characteristic.

Theorem [GSS18]

Verifying hitting-sets for VP is in PSPACE, regardless of the base field

F. Therefore, constructing small hitting-sets for VP is in PSPACE.

Previously, verifying hitting-sets in PSPACE was open even for F = C.
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Proof sketch

We need the construction of a universal circuit  (x, y) over a field K
[Raz08]. It has the property that every small arithmetic circuit over K is

simulated by  (x,�) for some � 2 K.

Let K = F(✏). Then VP consists of the arithmetic circuits C over F
satisfying C (x) ⌘  (x,�)|✏=0 for some � 2 K.

Theorem [GSS18]

H = {u1, . . . , uk} is not a hitting-set i↵ 9 (↵,�) 2 Kn ⇥Km such that

• 8i 2 [n], ↵r+1
i

� 1 2 ✏F[✏]
•  (↵,�)� 1 2 ✏F[✏], and
• 8i 2 [k],  (u

i

,�) 2 ✏F[✏]

This gives an APS characterization of hitting-sets for VP.
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Algebraic independence testing

over finite fields



Introduction

Definition (algebraic independence)

Polynomials f1, . . . , fm 2 F[X1, . . . ,Xn

] are algebraically dependent if

they satisfy a nontrivial polynomial relation Q(f1, . . . , fm) = 0.

Otherwise they are algebraically independent.

Example

X + Y and (X + Y )2 are algebraically dependent, while X and Y are

algebraically independent.
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Introduction

Algebraic independence is related to the transcendence degree of field

extensions and the dimension of algebraic varieties.

It has also found applications in polynomial identity testing, construction

of extractors, etc.

Question: Can we test algebraic independence e�ciently?
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Jacobian criterion

Theorem (Jacobian criterion [Jac41])

Suppose char(F) = 0. Then f1, . . . , fm 2 F[X1, . . . ,Xn

] are algebraically

independent i↵ the Jacobian matrix

J(f1, . . . , fm) =

0

BB@

@f1
@X1

· · · @f1
@X

n

...
. . .

...
@f

m

@X1
· · · @f

m

@X
n

1

CCA

has full row rank over F(X1, . . . ,Xn

).

Corollary

Algebraic dependence testing is in coRP if char(F) = 0.
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Algebraic independence over finite fields

However, the Jacobian criterion may fail in positive characteristic.

Example: f1 = X , f2 = Y

p

J(f1, f2) =

 
1 0

0 pY

p�1

!
=

 
1 0

0 0

!
if char(F) = p.

Previously, it was known that algebraic independence testing over finite

fields is in NP#P (Mittmann, Saxena, Scheiblechner, Trans. AMS’14).
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Our result

Theorem [GSS18]

Algebraic independence testing over finite fields is in AM \ coAM.

Corollary

Algebraic independence testing over finite fields is not NP-hard (or

coNP-hard) unless PH collapses to its second level.
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Geometric reformulation

f1, . . . , fm 2 F
q

[X1, . . . ,Xn

] define polynomial map f : Fn

q

! Fm

q

.

Let V := Im(f).

Fact

dimV  m, and equality holds i↵ f1, . . . , fm are algebraically

independent.

We want to distinguish the two cases dimV = m and dimV < m.

We can reduce to the case that n = m and q is large enough (Pandey,

Saxena, Sinhababu, MFCS’16).
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Proof sketch

How do we separate the two cases dimV = m and dimV < m?

Idea: estimate the cardinality of S := Im(f|Fn

q

: Fn

q

! Fm

q

) ✓ V .

Lemma [GSS18]

We have

8
<

:
|S |  �Qm

i=1 deg(fi )
� · qm�1 if dimV < m,

|S | � (1�o(1))Q
m

i=1 deg(fi )
· qm if dimV = m.

Lemma (Goldwasser-Sipser [GS86])

Let S be a set whose membership is testable in NP, and either |S |  k

or |S | � 2k for some given k > 0. Then deciding if |S | � 2k is in AM.

) algebraic independence testing is in AM.
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Proof sketch

To prove the coAM result, we pick random y 2 S , and estimate the

cardinality N

y

of the preimage of y under f|Fn

q

: Fn

q

! Fm

q

.

Lemma [GSS18]

If dimV = m, then w.h.p, N
y

Qm

i=1 deg(fi ).

If dimV < m, then for k > 0, Pr[N
y

� k] � 1� k

Q
m

i=1 deg(fi )/q.

Choose 2
Q

m

i=1 deg(fi )  k ⌧ q/
Q

m

i=1 deg(fi ), and apply the

Goldwasser-Sipser Lemma to the preimage of y

) algebraic independence testing is in coAM.
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Conclusion



Summary and open problems

We have shown

• APS is NP-hard and is in PSPACE.

• Verifying hitting-sets for VP is in PSPACE.

• Algebraic independence testing over finite fields is in AM \ coAM.

Open problems:

• When f1, . . . , fn are defined over Q, it is known that PS 2 AM under

GRH [Koiran ’96]. Can we put APS in AM, or in any complexity

class lower than PSPACE?

• Subexponential-time algorithm for algebraic independence testing

over finite fields?
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Questions?
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