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Permanent Review

rF’ermanent: Given i X n matrix A = {ai,j} j
per(A) = ) Haz‘,a@')
k ceS, 1=1 J
Example:
0 —1 2
A=13 4 =2
1 2 1

per(A)=040—-3 +2+12 +8 =19




Permanent complexity

CRyserOs/GIynn@s formula Permanent can be computed in time O(n2") )
CQuestion: Can the permanent be e# ciently computed? )
L Probablynot: per ! PH =" PH collapses

Theorem [Valiant (1979)]: The permanent of a matrix is # P-hard to compute.

C&P-hardness: Let PER be an oracle which computes the permanent of a matrix.\
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Permanent counts cycle covers
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Combinatorial interpretation:

- If A is adjacency matrix, then™
per(A) = the number of cycle covers of graph.

- If A is adjacency matrix with edge weights, then
per(A) = the sum of the weighted cycle covers of graph.



ValiantOs reduction

Idea behind ValiantOs proof: Construct graph such that the weighted cycle covers "
correspond to the number of solutions to a 3SAT formula.
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Figure: A single OinterchangeO in ValiantOs original proof



Going beyond ValiantOs reduction

Drawbacks to ValiantOs reduction:

1) Relies on complicated cycle cover gadgets

- Ben-Dor and Halevi (1993): SimpliPed cycle cover argument

- Terry Rudolph (2009): Built subclass of quantum circuits with amplitudes
proportional to the permanent

- Scott Aaronson (2011): #P-hardness of permanent from linear optics

2) Not suited for OstructuredO matrices

- Invertible: ValiantOs matrices are probably invertible, but tedious to prove

- Unitary: ValiantOs matrices are not unitary, and no obvious way forward

Plan: Modify AaronsonOs proof and use quantum reductions to handle classes of
matrices not suited for reductions based on cycle covers.




#P-hardness for new classes of matrices

ﬁl‘heorem: The permanent of an Nn'! N matrix A in any of the classical Lie \
groups over the complex numbers is # P-hard:
General linear: A € GL(n) iff det(A) # 0
Orthogonal: A € O(n) iff AAT =1,

---------------------------------------------------------------------------------------------------------

Symplectic: A € Sp(2n) iff ATQA = Q where Q = (_(}n Ié" )

S

Theorem: Let p £ 2,3 be prime. There exists a bnite beld of characteristic p, \
namely Fy4, such that the permanent of an orthogonal matrix in  Fpzis hard for

Che class Modj,P. )

P = 2 : Permanent = determinant
p = 3 : Nontrivial algorithm due to Kogan (1996)

-—— Dichotomy

Theorem: The permanent of an orthogonal matrix over Fyis Mod,P-hard for
1/16th of all primes.




Outline of AaronsonOs proof

lc= (1 1)¢™

L x! {0,1} "

rlnput: Given polynomially sized circuit"C : {0, 1}" ! {0, 1}
Output: Number of unsatisfying assignments minus satisfying assignments to C

~
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Encode ! ¢ into the Convert Q into a linear
transition amplitude of optical network L

a quantum circuit Q

over gqubits

®

Use correspondence
between linear optics
and permanents
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Comparison of linear optics

Quantum computing with qudits

Linear optics with photons

“ | " (Cm)! n

States:

Operations: U ! U(m“)

11 I
States: ‘! ! (Cm)'ln
symmetric tensor product
1 } .
vl oL Vn:_l Vi (1) .o Vi(n)
" 1S,
I
Operations: L~ " for L ! U(m)




Linear Optics - States

rStates: 1 photons and rmmodes \

photons ~ indistinguishable balls "
kmodes ~ distinct bins/locations J

O
O
L 1O

Notation: Let [S1,S2,...,Sm) be the state with siphotons in the brst mode, S2
In the second, and so on.
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Linear Optics - Transformations

ldea: Linear optical transformation is specibPed by its action on a single photon.
Apply homomorphism to lift to entire Hilbert space for multiple photons.

- )

m unitary L, the amplitude from state "

' transition formula:  Given m !

IS! = |s1,S2,...,Sm! tostate |T) = [t1,to,...,tm)is
er(L
S1'Sg' !tlltz!...tm!

where Ls 1 is the matrix obtained by taking "
- Si copies of row ifrom "L
L Li copies of column ifrom L

Example:
1 ) 1 1 |SI — |1,1| . 1 . 1 1 " _
— .|_ I_ _ 'I—_ |20| L 1 1
L "5 1 "1 IT! = |2,0 > 2 1 1 O]

UI\)T’:H k

CObservation: If|S=|T!=|1,...,1!, then!T|! (L) |S" = per(L).




Outline of #P-hardness proof
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rlnput: Given polynomially sized circuit"C : {0, 1}" ! {0, 1}
Output: Number of satisfying assignments minus unsatisfying assignments to C
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Encode ! ¢ into the
transition amplitude of
a quantum circuit Q
over qubits

Convert Q into a linear
optical network L
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Use correspondence
between linear optics
and permanents



Postselected linear optics Is quantum universal

~

Theorem [Knill, LalRamme, Milburn (2001)]:
Postselected linear optical circuits are universal for quantum computation. "

Formally, given quantum circuit Qwith polynomially many CSIGN and single-

such that
|t (L))" = 4—1| 10aa@ Q|0aaad
where,
nr=10,10,1,...,0,1!

Il = number of CSIGN gates in Q

_

gubit gates, there exists linear optical circuit Lwith polynomially many modes "

C\Iote: CSIGN + single-gubits gates are universal for guantum computation

CSIGN |x1Xo! = (" 1)*1*2 |x1X!

_

rTheorem [Aaronson (2011)]:

@ not unitary
I ¢ | ! \
~ = =10...0[QJ0...0"=4" 1|1 (L)I"=4"per(L,,)
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KLM protocol - representing states
. | | )

Theorem [Knill, LalBamme, Milburn (2001)]:
Given quantum circuit Qwith polynomially many CSIGN and single-qubit gates,
there exists linear optical circuit L with polynomially many modes such that

(L) 1" = i'Oaa@4Q|Oaa@
where |I!'=10,1,0,1,...,0,1!
(here 11 | y

Representing qubits with linear optical states:
Problem: qubit is either in state |Olor |1l but number of photons is conserved
Solution: use two modes and one photon to encode a single qubit

Dual rail encoding

|oI " |o 1|
|1|=- |1 O'

— This is the source of non-unitarity in AaronsonOs proof

qubits Iinear optical state



Add new encoding phase to KLM

~

Goal: Construct linear optical circuit Lfrom Qsuch that
1,1,...,1'(L)[14,1,...,1"#! 04da@ Q|04dad

Problem: KLM uses dual rail encoding.

Solution: Prepare the dual rail encoding using another gadget.

_

KLM solution: 1 qubit represented by 1 photon and 2 modes

Our solution: 1 qubit represented by 4 photons and 4 modes

1,1,1, 1!

Encoding gadget —

0,1,2,1!
|

dual rail encoding postselected photon

dumpster




Add new encoding phase to KLM

~

Goal: Construct linear optical circuit Lfrom Qsuch that
1,1,...,1'(L)[14,1,...,1"#! 04da@ Q|04dad

Problem: KLM uses dual rail encoding.

Solution: Prepare the dual rail encoding using another gadget.

_

KLM solution: 1 qubit represented by 1 photon and 2 modes

Our solution: 1 qubit represented by 4 photons and 4 modes

11,1, 1, 1!
Encoding gadget —

0,1, 2, 1!
Decoding gadget —

1,1,1,1



Putting it all together

rTheorem:
|
P C
0 . _'I'I'l
— 3
=(! 6)" 3 5 #,...,1!"(L)]|1,...,18
] _ﬁ-l
o 3
=(! 6" 3 7 perL)
- |
unitary
How do you bnd gadgets?
1. Guess transformation” 1 . 2 "! _2 ! g
E=L1_" 0 3 35
. 6 n 2 1" 1 1
2. Use constraint solver




Permanent hardness over bnite pbelds

(Theorem: Permanent is # P-hard for unitary matrices. )

v

hI'heorem: Let p E 2, 3 be prime. There exists a Pnite Peld of characteristic p, \
namely Fy4, such that the permanent of an orthogonal matrix in Fpeis Mod, P

Lhard. J

Proof. Inspect gadgets carefully

All entries in Q(! )

1 2 |z I2 —— I
E=L"—" 9o '3 3% l = 2+ 2+ 3+ 6
6 ||2 ||1 1
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Summarizing matrix permanent complexity

ch:n SOMn) {0, 13" " | xTAax! O

exact #P-hard #P-hard #P-hard #P-hard
[Valiant 79] [GS 2017] [Valiant 79] [GS 2017]
AnBroximate #P-hard #P-hard FPTAS S
PP [Valiant 79] | [GS 2017] | [JSV 2004] ak

ﬂ)pen Problems: x

Is there a polynomial-time approximation algorithm for permanents of
positive-semidepbnite matrices?
- best known: polynomial time 4.84"-approximation [AGGS 2017]

- Are orthogonal permanents over F, hard for Mod,P forall pt 2,3?

- Are there more insights about the permanent to be gained through
this linear optical lens?
- [CCG 2016] : under restricted conditions on the eigenvalues, can

K outperform GurvitsOsadditive approximation algorithm j




