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MAX k-CSP

- n variables
- m constraints

- Satisfy as many as possible.
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Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.
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MAX k-CSP

- n variables taking values in some finite domains.
- m constraints: each is a non-negative k-ary function.
- Satisfy as many as possible.
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CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let SCi := (xi1 , · · · , xik ). Then:

Ci ≡ f (xi1 + bi1 , · · · , xik + bik ) ≡
∑

α∈{0,1}SCi

f (α + bCi ) · x(SCi ,α) ,

with x(SCi ,α) = indicator of assignment of α to SCi .

maximize EC∈Φ
[∑

α∈{0,1}SC f (α + bC ) · x(SC ,α)
]

∑
α∈{0,1}SC
α(i)=b

x(SC ,α) = x(i,b)
∀C ∈ Φ, i ∈ SC ,

b ∈ {0, 1}

∑
b∈{0,1}

x(i,b) = 1 ∀i ∈ [n]

x(S,α) ≥ 0

#constraints =
Θ
(
m · 2k

)
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Extended Formulation and Sherali-Adams Relaxation

EF:

SA:
S TDS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.
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Result

Main Theorem: For
all CSPs, if Ba-
sic LP has integral-
ity gap of (c, s)
then for all ε >
0, there exist large
enough instance(s)
with integrality gap
of (c − ε, s + ε) for
SA(Õε(log n)).



Result
With [Kothari-
Meka-Raghavendra-
17]: For all CSPs,
if Basic LP has
(c, s) gap, then
so does any LP
Extended For-
mulation of size
nÕ(log n).

Ignoring ε losses.



Hard Instance

Basic:
C1 C2

SA:
S TDS DT

DS∩T

#variables = n and #constraints = m = ∆ · n.
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- For each variable in Φ0, create
bucket with large number of
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- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.
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Step 1: Requirements

A family of distributions, {CS}|S|≤t

CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph.

Target diameter = girth/100.

Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.
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Step 2: Conditioning and Propagation
Assume: c = 1

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.
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