From Weak to Strong LP Gaps for all CSPs

Mrinalkanti Ghosh

joint work with: Madhur Tulsiani

- *n* variables
- *m* constraints

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

- n variables taking boolean values.
- *m* constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

```
x_1 \lor x_{22} \lor \overline{x}_{19}

x_3 \lor \overline{x}_9 \lor x_{23}

x_5 \lor \overline{x}_7 \lor \overline{x}_9

:
```

- *n* variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

- *n* variables taking boolean values.
- *m* constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Approximation Problem: Approximate the *fraction* of constraints simultaneously satisfiable.

- *n* variables taking values in some finite domains.
- *m* constraints: each is a non-negative k-ary function.
- Satisfy as many as possible.

Approximation Problem: Approximate the *fraction* of constraints simultaneously satisfiable.

MAX k-CSP (f): for *i*-th constraint, let $S_{C_i} := (x_{i_1}, \dots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{C_i}}} f(\alpha + b_{C_i}) \cdot x_{(S_{C_i},\alpha)},$$

MAX k-CSP (f): for *i*-th constraint, let $S_{C_i} := (x_{i_1}, \dots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{C_i}}} f(\alpha + b_{C_i}) \cdot x_{(S_{C_i},\alpha)},$$

$$\sum_{\substack{\alpha \in \{0,1\}^{S_C} \\ \alpha(i) = b}} x_{(S_C,\alpha)} = x_{(i,b)} \qquad \begin{array}{c} \forall C \in \Phi, i \in S_C, \\ b \in \{0,1\} \end{array}$$

$$\sum_{b \in \{0,1\}} x_{(i,b)} = 1 \qquad \qquad \forall i \in [n]$$

$$x_{(S,\alpha)} \ge 0$$

MAX k-CSP (f): for *i*-th constraint, let $S_{C_i} := (x_{i_1}, \dots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{C_i}}} f(\alpha + b_{C_i}) \cdot x_{(S_{C_i},\alpha)},$$

maximize
$$\mathbb{E}_{C \in \Phi} \left[\sum_{\alpha \in \{0,1\}^{S_C}} f(\alpha + b_C) \cdot x_{(S_C,\alpha)} \right]$$

$$\sum_{\substack{\alpha \in \{0,1\}^{S_C} \\ \alpha(i) = b}} x_{(S_C,\alpha)} = x_{(i,b)} \qquad \forall C \in \Phi, i \in S_C, \\ b \in \{0,1\}$$

$$\sum_{b \in \{0,1\}} x_{(i,b)} = 1 \qquad \forall i \in [n]$$

$$x_{(S,\alpha)} \ge 0$$

MAX k-CSP (f): for *i*-th constraint, let $S_{C_i} := (x_{i_1}, \dots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{C_i}}} f(\alpha + b_{C_i}) \cdot x_{(S_{C_i},\alpha)},$$

maximize
$$\mathbb{E}_{C \in \Phi} \left[\sum_{\alpha \in \{0,1\}^{S_C}} f(\alpha + b_C) \cdot x_{(S_C,\alpha)} \right]$$

$$\sum_{\substack{\alpha \in \{0,1\}^{S_C} \\ \alpha(i) = b}} x_{(S_C,\alpha)} = x_{(i,b)} \qquad \begin{array}{l} \forall C \in \Phi, i \in S_C, \\ b \in \{0,1\} \end{array} \qquad \begin{array}{l} \# \text{constraints} = \\ \Theta\left(m \cdot 2^k\right) \end{array}$$

$$\sum_{\substack{b \in \{0,1\} \\ x_{(S,\alpha)} \geq 0}} x_{(i,b)} = 1 \qquad \forall i \in [n]$$

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- Optimize objective $\langle w_{\Phi}, x \rangle$ (depending on Φ) over P.

Image from [Fiorini-Rothvoss-Tiwari-11]

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- Optimize objective $\langle w_{\Phi}, x \rangle$ (depending on Φ) over P.
- Introduce additional variables y. Optimize over polytope $P = \{x \mid \exists y \ Ex + Fy = g, y \geq 0\}$. Size equals #variables + #constraints.

Image from [Fiorini-Rothvoss-Tiwari-11]

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- **Sherali-Adams:** A Sherali-Adams of level t is an Extended Formulation with #variables $= \binom{n}{t} \cdot 2^t$.

Image from [Fiorini-Rothvoss-Tiwari-11]

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- **Sherali-Adams:** A Sherali-Adams of level t is an Extended Formulation with #variables $= \binom{n}{t} \cdot 2^t$.
- Variables: $x_{(S,\alpha)}$, $|S| \le t$, $\alpha \in \{0,1\}^S$.

EF:

SA:

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- **Sherali-Adams:** A Sherali-Adams of level t is an Extended Formulation with #variables $= \binom{n}{t} \cdot 2^t$.
- Feasible point in SA(t): Family $\{\mathcal{D}_S\}_{|S| \leq t}$ of consistent distribution with \mathcal{D}_S a distribution on $\{0,1\}^S$.

EF:

SA:

Basic:

$$C_1 \cdot \cdot \cdot \cdot \cdot C_2$$

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- **Sherali-Adams:** A Sherali-Adams of level t is an Extended Formulation with #variables $= \binom{n}{t} \cdot 2^t$.
- Feasible point in SA(t): Family $\{\mathcal{D}_S\}_{|S| \leq t}$ of consistent distribution with \mathcal{D}_S a distribution on $\{0,1\}^S$.
- Similarly, for Basic LP solution.

Result

Result

Main Theorem: For all CSPs, if Basic LP has integrality gap of (c,s) then for all $\varepsilon > 0$, there exist large enough instance(s) with integrality gap of $(c - \varepsilon, s + \varepsilon)$ for $SA(\tilde{O}_{\varepsilon}(\log n))$.

With [Kothari-Meka-Raghavendra-17]: For all CSPs, if Basic LP has (c,s) gap, then so does any LP Extended Formulation of size $n\widetilde{O}(\log n)$

Ignoring ε losses.

Use the hard instance Φ_0 of the basic relaxation as template to build the new hard instance on n variables and $m = \Delta \cdot n$ constraints.

#variables = n and #constraints = $m = \Delta \cdot n$.

For each variable in Φ_0 , create bucket with large number of variables.

- For each variable in Φ_0 , create bucket with large number of variables.
 - Independently, sample each constraint as:

- For each variable in Φ_0 , create bucket with large number of variables.
 - Independently, sample each constraint as:
 - Sample constraint C from Φ_0 .

- For each variable in Φ_0 , create bucket with large number of variables.
 - Independently, sample each constraint as:
 - Sample constraint C from Φ_0 .
 - For each variable x in S_C , choose $y_x \in B_x$, u.a.r.

- For each variable in Φ_0 , create bucket with large number of variables.
- Independently, sample each constraint as:
 - Sample constraint C from Φ_0 .
 - For each variable x in S_C , choose $y_x \in B_x$, u.a.r.
 - Put the constraint C on the variables $\{y_x\}_{x \in S_C}$.

#variables = n and #constraints = $m = \Delta \cdot n$.

- For each variable in Φ_0 , create bucket with large number of variables.
- Independently, sample each constraint as:
 - Sample constraint C from Φ_0 .
 - For each variable x in S_C , choose $y_x \in B_x$, u.a.r.
 - Put the constraint C on the variables $\{y_x\}_{x \in S_C}$.

W.h.p., the instance hypergraph generated has o(n) cycles of length at most $\eta \log n$ for $\eta > 0$.

#variables = n and #constraints = $m = \Delta \cdot n$.

- For each variable in Φ_0 , create bucket with large number of variables.
- Independently, sample each constraint as:
 - Sample constraint C from Φ_0 .
 - For each variable x in S_C , choose $y_x \in B_x$, u.a.r.
 - Put the constraint C on the variables $\{y_x\}_{x \in S_C}$.

W.h.p., the instance hypergraph generated has o(n) cycles of length at most $\eta \log n$ for $\eta > 0$. Remove one constraint from every small cycle and get an instance of girth $\eta \log n$.

Overview - Completeness

Instance:

Consistent Distributions:

Overview - Completeness

Instance:

Consistent Distributions:

Step 2: Construction of consistent distribution – Conditioning and propagating.

Overview - Completeness

Instance:

Consistent Distributions:

- Step 1: Consistent Low-Diameter Decompositions.
- Step 2: Construction of consistent distribution Conditioning and propagating.

Step 1: Requirements

ullet A family of distributions, $\{\mathcal{C}_{\mathcal{S}}\}_{|\mathcal{S}| \leq t}$

- ullet A family of distributions, $\{\mathcal{C}_{\mathcal{S}}\}_{|\mathcal{S}|\leq t}$
- C_S: a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph.

- ullet A family of distributions, $\{\mathcal{C}_{\mathcal{S}}\}_{|\mathcal{S}|\leq t}$
- C_S : a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = $\frac{girth}{100}$.

- ullet A family of distributions, $\{\mathcal{C}_{\mathcal{S}}\}_{|\mathcal{S}|\leq t}$
- C_S : a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = $\frac{girth}{100}$.

- ullet A family of distributions, $\{\mathcal{C}_S\}_{|S|\leq t}$
- C_S : a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = $\frac{girth}{100}$.
- Consistency:

Figure: $S \subset T$

- ullet A family of distributions, $\{\mathcal{C}_S\}_{|S|\leq t}$
- C_S : a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = $\frac{girth}{100}$.
- Consistency:

Figure: $S \subset T$

- ullet A family of distributions, $\{\mathcal{C}_S\}_{|S|\leq t}$
- C_S : a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = $\frac{girth}{100}$.
- Consistency:

Figure: $S \subset T$

- ullet A family of distributions, $\{\mathcal{C}_S\}_{|S|\leq t}$
- C_S : a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = $\frac{girth}{100}$.
- Consistency:

Figure: $S \subset T$

Assume: c = 1

Construction of \mathcal{D}_S :

- Sample a partition $\mathcal P$ of $\mathcal S$ from $\mathcal C_{\mathcal S}.$

Assume: c = 1

Construction of $\mathcal{D}_{\mathcal{S}}$:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S .
- For each cell T of \mathcal{P} , construct tree $\mathcal{T}_{\mathcal{S}}$ by connecting all shortest paths. Root the tree arbitrarily.

Assume: c = 1

Construction of \mathcal{D}_S :

- Sample a partition \mathcal{P} of S from \mathcal{C}_S .
- For each cell T of \mathcal{P} , construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.

Assume: c = 1

Construction of \mathcal{D}_S :

- Sample a partition \mathcal{P} of S from \mathcal{C}_S .
- For each cell T of \mathcal{P} , construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.

Assume: c = 1

Construction of $\mathcal{D}_{\mathcal{S}}$:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S .
- For each cell T of \mathcal{P} , construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.

Assume: c = 1

Construction of \mathcal{D}_{S} :

- Sample a partition \mathcal{P} of S from \mathcal{C}_S .
- For each cell T of \mathcal{P} , construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.

Assume: c = 1

The cut constraints may not be satisfied.

Construction of \mathcal{D}_{S} :

- Sample a partition $\mathcal P$ of S from $\mathcal C_S$.
- For each cell T of \mathcal{P} , construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.

Assume: c = 1

The cut constraints may not be satisfied. The distribution for any tree is independent of the choice of root.

Construction of $\mathcal{D}_{\mathcal{S}}$:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S .
- For each cell T of \mathcal{P} , construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.

Assume: c = 1

The cut constraints may not be satisfied. The distribution for any tree is independent of the choice of root.

Construction of $\mathcal{D}_{\mathcal{S}}$:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S .
- For each cell T of \mathcal{P} , construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.

High girth + consistent low-diameter decomposition \Rightarrow Consistent Distribution.

Charikar-Makarychev-Makarychev-09:

Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar-Makarychev-Makarychev-09:

Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar-Makarychev-Makarychev-09:

Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar-Makarychev-Makarychev-09:

Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar-Makarychev-Makarychev-09:

Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar-Makarychev-Makarychev-09:

Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar-Makarychev-Makarychev-09:

Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar et al. 1998: There exists a rotation invariant, oblivious decomposition of sphere into low diameter components.

The probability of cutting a hyperedge dictates the size of the sets we can handle.

 We prove a dichotomy result for all CSPs for linear programming relaxations.

- We prove a dichotomy result for all CSPs for linear programming relaxations.
- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.

- We prove a dichotomy result for all CSPs for linear programming relaxations.
- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.
- Q: Can the number of levels of SA be improved?

- We prove a dichotomy result for all CSPs for linear programming relaxations.
- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.
- Q: Can the number of levels of SA be improved?
- Q: What can be said for the case of SDP hierarchies?

- We prove a dichotomy result for all CSPs for linear programming relaxations.
- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.
- Q: Can the number of levels of SA be improved?
- Q: What can be said for the case of SDP hierarchies?

Questions?

Other Dichotomy Results

• [Raghavendra-08]: Assuming Unique Games Conjecture, either a basic SDP achieves a (c, s)-approximation for a CSP or it is NP-hard to do so (for th

Other Dichotomy Results

- [Raghavendra-08]: Assuming Unique Games Conjecture, either a basic SDP achieves a (c, s)-approximation for a CSP or it is NP-hard to do so (for th
- [Raghavendra-Steurer-09]: (For Unique Games) If a basic SDP has gap of (c, s) then so does $(\log \log n)^{\frac{1}{4}}$ -levels of *mixed* relaxation.

Other Dichotomy Results

- [Raghavendra-08]: Assuming Unique Games Conjecture, either a basic SDP achieves a (c, s)-approximation for a CSP or it is NP-hard to do so (for th
- [Raghavendra-Steurer-09]: (For Unique Games) If a basic SDP has gap of (c, s) then so does $(\log \log n)^{\frac{1}{4}}$ -levels of *mixed* relaxation.
- This result If basic LP relaxation has a gap of (c, s), then so does $O(\log n)$ -level SA.