
From Weak to Strong LP Gaps
for all CSPs

Mrinalkanti Ghosh
joint work with:

Madhur Tulsiani



MAX k-CSP

- n variables
- m constraints

- Satisfy as many as possible.

Max-3-SAT

x1 ∨ x22 ∨ x19

x3 ∨ x9 ∨ x23

x5 ∨ x7 ∨ x9
...

Max-Cut

x6

x5 x7 x3

x4

x2

x1
x1 6= x2
x2 6= x5
x3 6= x4

...

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

x1 ∨ x22 ∨ x19

x3 ∨ x9 ∨ x23

x5 ∨ x7 ∨ x9
...

Max-Cut

x6

x5 x7 x3

x4

x2

x1
x1 6= x2
x2 6= x5
x3 6= x4

...

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

x1 ∨ x22 ∨ x19

x3 ∨ x9 ∨ x23

x5 ∨ x7 ∨ x9
...

Max-Cut

x6

x5 x7 x3

x4

x2

x1
x1 6= x2
x2 6= x5
x3 6= x4

...

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

x1 ∨ x22 ∨ x19

x3 ∨ x9 ∨ x23

x5 ∨ x7 ∨ x9
...

Max-Cut

x6

x5 x7 x3

x4

x2

x1
x1 6= x2
x2 6= x5
x3 6= x4

...

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

x1 ∨ x22 ∨ x19

x3 ∨ x9 ∨ x23

x5 ∨ x7 ∨ x9
...

Max-Cut

x6

x5 x7 x3

x4

x2

x1
x1 6= x2
x2 6= x5
x3 6= x4

...

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



MAX k-CSP

- n variables taking values in some finite domains.
- m constraints: each is a non-negative k-ary function.
- Satisfy as many as possible.

Max-3-SAT

x1 ∨ x22 ∨ x19

x3 ∨ x9 ∨ x23

x5 ∨ x7 ∨ x9
...

Max-Cut

x6

x5 x7 x3

x4

x2

x1
x1 6= x2
x2 6= x5
x3 6= x4

...

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let SCi := (xi1 , · · · , xik ). Then:

Ci ≡ f (xi1 + bi1 , · · · , xik + bik ) ≡
∑

α∈{0,1}SCi

f (α + bCi ) · x(SCi ,α) ,

with x(SCi ,α) = indicator of assignment of α to SCi .

maximize EC∈Φ
[∑

α∈{0,1}SC f (α + bC ) · x(SC ,α)
]

∑
α∈{0,1}SC
α(i)=b

x(SC ,α) = x(i,b)
∀C ∈ Φ, i ∈ SC ,

b ∈ {0, 1}

∑
b∈{0,1}

x(i,b) = 1 ∀i ∈ [n]

x(S,α) ≥ 0

#constraints =
Θ
(
m · 2k

)



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let SCi := (xi1 , · · · , xik ). Then:

Ci ≡ f (xi1 + bi1 , · · · , xik + bik ) ≡
∑

α∈{0,1}SCi

f (α + bCi ) · x(SCi ,α) ,

with x(SCi ,α) = indicator of assignment of α to SCi .

maximize EC∈Φ
[∑

α∈{0,1}SC f (α + bC ) · x(SC ,α)
]

∑
α∈{0,1}SC
α(i)=b

x(SC ,α) = x(i,b)
∀C ∈ Φ, i ∈ SC ,

b ∈ {0, 1}

∑
b∈{0,1}

x(i,b) = 1 ∀i ∈ [n]

x(S,α) ≥ 0

#constraints =
Θ
(
m · 2k

)



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let SCi := (xi1 , · · · , xik ). Then:

Ci ≡ f (xi1 + bi1 , · · · , xik + bik ) ≡
∑

α∈{0,1}SCi

f (α + bCi ) · x(SCi ,α) ,

with x(SCi ,α) = indicator of assignment of α to SCi .

maximize EC∈Φ
[∑

α∈{0,1}SC f (α + bC ) · x(SC ,α)
]

∑
α∈{0,1}SC
α(i)=b

x(SC ,α) = x(i,b)
∀C ∈ Φ, i ∈ SC ,

b ∈ {0, 1}

∑
b∈{0,1}

x(i,b) = 1 ∀i ∈ [n]

x(S,α) ≥ 0

#constraints =
Θ
(
m · 2k

)



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let SCi := (xi1 , · · · , xik ). Then:

Ci ≡ f (xi1 + bi1 , · · · , xik + bik ) ≡
∑

α∈{0,1}SCi

f (α + bCi ) · x(SCi ,α) ,

with x(SCi ,α) = indicator of assignment of α to SCi .

maximize EC∈Φ
[∑

α∈{0,1}SC f (α + bC ) · x(SC ,α)
]

∑
α∈{0,1}SC
α(i)=b

x(SC ,α) = x(i,b)
∀C ∈ Φ, i ∈ SC ,

b ∈ {0, 1}

∑
b∈{0,1}

x(i,b) = 1 ∀i ∈ [n]

x(S,α) ≥ 0

#constraints =
Θ
(
m · 2k

)



Extended Formulation and Sherali-Adams Relaxation

EF:

SA:
S TDS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.



Extended Formulation and Sherali-Adams Relaxation

EF:

Image from
[Fiorini-Rothvoss-Tiwari-11]

SA:

S T
DS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Optimize objective 〈wΦ, x〉
(depending on Φ) over P.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.



Extended Formulation and Sherali-Adams Relaxation

EF:

Image from
[Fiorini-Rothvoss-Tiwari-11]

SA:

S T
DS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Optimize objective 〈wΦ, x〉
(depending on Φ) over P.

- Introduce additional variables y .
Optimize over polytope
P = {x | ∃y Ex + Fy = g , y ≥ 0} .
Size equals
#variables + #constraints.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.



Extended Formulation and Sherali-Adams Relaxation

EF:

Image from
[Fiorini-Rothvoss-Tiwari-11]

SA:

S T
DS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.



Extended Formulation and Sherali-Adams Relaxation

EF:

Image from
[Fiorini-Rothvoss-Tiwari-11]

SA:

S T
DS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Variables: x(S,α), |S| ≤ t,
α ∈ {0, 1}S .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.



Extended Formulation and Sherali-Adams Relaxation
EF:

SA:
S TDS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.



Extended Formulation and Sherali-Adams Relaxation
EF:

SA:
S TDS DT

DS∩T

Basic:
C1 C2

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances Φ as a
(linear) objective function wΦ.

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables =

(n
t
)
· 2t .

- Feasible point in SA(t): Family
{DS}|S|≤t of consistent distribution
with DS a distribution on {0, 1}S .

- Similarly, for Basic LP solution.



Result



Result



Result

Main Theorem: For
all CSPs, if Ba-
sic LP has integral-
ity gap of (c, s)
then for all ε >
0, there exist large
enough instance(s)
with integrality gap
of (c − ε, s + ε) for
SA(Õε(log n)).



Result
With [Kothari-
Meka-Raghavendra-
17]: For all CSPs,
if Basic LP has
(c, s) gap, then
so does any LP
Extended For-
mulation of size
nÕ(log n).

Ignoring ε losses.



Hard Instance

Basic:
C1 C2

SA:
S TDS DT

DS∩T

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0

n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9

- For each variable in Φ0, create
bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

Basic:
C1 C2

SA:
S TDS DT

DS∩T

Use the hard instance Φ0 of the basic relaxation as template to
build the new hard instance on n variables and m = ∆ · n
constraints.

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.

For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.

Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0.

Remove one constraint from
every small cycle and get an instance of girth η log n.



Hard Instance

#variables = n and #constraints = m = ∆ · n.

x1
Φ0

x2

Φ0

x3

Φ0

x4

Φ0

x5

Φ0

x6

Φ0

x7

Φ0

x8

Φ0

x9

Φ0 n/9n/9n/9n/9n/9n/9n/9n/9n/9

b1
b2
b3
b4
b5
b6
b7
b8
b9 - For each variable in Φ0, create

bucket with large number of
variables.

- Independently, sample each
constraint as:

Sample constraint C from Φ0.
For each variable x in SC , choose
yx ∈ Bx , u.a.r.
Put the constraint C on the
variables {yx}x∈SC .

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most η log n for η > 0. Remove one constraint from
every small cycle and get an instance of girth η log n.



Overview - Completeness

Instance: Consistent Distributions:

S TDS DT
DS∩T

Step 1: Consistent Low-Diameter
Decompositions.

Step 2: Construction of consistent
distribution – Conditioning
and propagating.



Overview - Completeness

Instance: Consistent Distributions:

S TDS DT
DS∩T

Step 1: Consistent Low-Diameter
Decompositions.

Step 2: Construction of consistent
distribution – Conditioning
and propagating.



Overview - Completeness

Instance: Consistent Distributions:

S TDS DT
DS∩T

Step 1: Consistent Low-Diameter
Decompositions.

Step 2: Construction of consistent
distribution – Conditioning
and propagating.



Step 1: Requirements

A family of distributions, {CS}|S|≤t

CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph.

Target diameter = girth/100.

Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 1: Requirements

A family of distributions, {CS}|S|≤t
CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph.

Target diameter = girth/100.
Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 1: Requirements

A family of distributions, {CS}|S|≤t
CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 1: Requirements

A family of distributions, {CS}|S|≤t
CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 1: Requirements

A family of distributions, {CS}|S|≤t
CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.
Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 1: Requirements

A family of distributions, {CS}|S|≤t
CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.
Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 1: Requirements

A family of distributions, {CS}|S|≤t
CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.
Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 1: Requirements

A family of distributions, {CS}|S|≤t
CS : a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.
Consistency:

Figure: S ⊂ T

S TDS DT
DS∩T

Minimize the quantity: the probability of a hyperedge being
cut. Target = ε.



Step 2: Conditioning and Propagation
Assume: c = 1

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

C1 C2

The cut constraints may
not be satisfied. The

distribution for any tree is
independent of the choice

of root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

C1 C2

The cut constraints may
not be satisfied. The

distribution for any tree is
independent of the choice

of root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

C1 C2

The cut constraints may
not be satisfied. The

distribution for any tree is
independent of the choice

of root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

The cut constraints may
not be satisfied.

The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Step 2: Conditioning and Propagation
Assume: c = 1

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of DS :
- Sample a partition P of S from
CS .

- For each cell T of P, construct
tree TS by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each TS
condition and propagate
assignments in TS using the local
distribution from basic relaxation.

- For cell T , retain only the
assignments to variables in T .

High girth + consistent low-diameter decomposition ⇒ Consistent
Distribution.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?

Questions?



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?

Questions?



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?

Q: What can be said for the case of SDP hierarchies?

Questions?



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?

Questions?



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?

Questions?



Other Dichotomy Results

[Raghavendra-08]: Assuming Unique Games Conjecture, either
a basic SDP achieves a (c, s)-approximation for a CSP or it is
NP-hard to do so (for th

[Raghavendra-Steurer-09]: (For Unique Games) If a basic
SDP has gap of (c, s) then so does (log log n) 1

4 -levels of mixed
relaxation.

This result If basic LP relaxation has a gap of (c, s), then so
does Õ(log n)-level SA.



Other Dichotomy Results

[Raghavendra-08]: Assuming Unique Games Conjecture, either
a basic SDP achieves a (c, s)-approximation for a CSP or it is
NP-hard to do so (for th

[Raghavendra-Steurer-09]: (For Unique Games) If a basic
SDP has gap of (c, s) then so does (log log n) 1

4 -levels of mixed
relaxation.

This result If basic LP relaxation has a gap of (c, s), then so
does Õ(log n)-level SA.



Other Dichotomy Results

[Raghavendra-08]: Assuming Unique Games Conjecture, either
a basic SDP achieves a (c, s)-approximation for a CSP or it is
NP-hard to do so (for th

[Raghavendra-Steurer-09]: (For Unique Games) If a basic
SDP has gap of (c, s) then so does (log log n) 1

4 -levels of mixed
relaxation.

This result If basic LP relaxation has a gap of (c, s), then so
does Õ(log n)-level SA.


