From Weak to Strong LP Gaps

for all CSPs

1]/

Mrinalkanti Ghosh

joint work with:

Madhur Tulsiani



MAX k-CSP

- n variables

- m constraints



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.

- Satisfy as many as possible.



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.

- Satisfy as many as possible.

Max-3-SAT

X1V Xo0 V Xi9
x3 V Xg V X3

x5 V X7 V Xog



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.

- Satisfy as many as possible.

Max-3-SAT Max-Cut
1
X1V x2 V Xi9 X2 x1 # X0
x3 V Xg V Xo3 X, X2#X5
x5 V X7 V Xog X3 # X4
X5 X7 X3 .



MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.

- Satisfy as many as possible.

Max-3-SAT Max-Cut
1
X1V X2 V Xi9 X2 X1 # Xo
x3 V Xg V X3 X X2 # X5
x5 V X7 V Xog X3 # X4
X5 X7 X3 :
X6

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



MAX k-CSP

- n variables taking values in some finite domains.
- m constraints: each is a non-negative k-ary function.

- Satisfy as many as possible.

Max-3-SAT Max-Cut
1
X1V x2 V Xi9 X2 X1 # X0
x3 V Xg V X3 X X2 # X5
x5 V X7 V Xo X3 # X4
X5 X7 X3 .
X6

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let S¢, := (xi,,- -, x;, ). Then:

Ci = f(xi, + by, -+ ,xi, + bj,) = Z f(a+ bc,) *X(Sc,0) »
a€{0,1}°Ci

with x(s. ) = indicator of assignment of « to Sc..
(56,704) g U



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let S¢, := (xi,,- -, x;, ). Then:

Ci = f(xi, + by, -+ ,xi, + bj,) = Z f(a+ bc,) *X(Sc,0) »
a€{0,1}°Ci

with x(s. ) = indicator of assignment of « to Sc..
(56,704) g U

Z N N VCe d,ie S,
(557a) - (ivb)
ae{0,1}°C be {0’ 1}
a(i)=b

Z X(i,b) = 1 Vi e [n]
be{0,1}

X(S5,0) = 0



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let S¢, := (xi,,- -, x;, ). Then:

Ci = f(xi, + by, -+ ,xi, + bj,) = Z f(a+ bc,) *X(Sc,0) »
a€{0,1}°Ci

with x(s. ) = indicator of assignment of « to Sc..
(56,704) g U

maximize Ecco [Zae{o,l}sc f(a+ bc) 'X(Sc,a)}

Z N N VCe d,ie S,
(557a) - (ivb)
ae{0,1}°C be {0’ 1}
a(i)=b

Z X(i,b) = 1 Vi e [n]
be{0,1}

X(S,0) = 0



CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let S¢, := (xi,,- -, x;, ). Then:

Ci = f(xi, + by, -+ ,xi, + bj,) = Z f(a+ bc,) *X(Sc,0) »
a€{0,1}°Ci

with x(s. ) = indicator of assignment of « to Sc..
(SC,7a) g U

maximize Ecco [Zae{o,l}sc f(a+ bc) 'X(Sc,a)}

Z VC e d,ic Se, #£constraints =
e fonySc b e {0,1}
a(i)=b
Z X(i,b) = 1 Vi e [n]
be{0,1}

X(S,0) = 0



Extended Formulation and Sherali-Adams Relaxation

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances ® as a
(linear) objective function wg.



Extended Formulation and Sherali-Adams Relaxation

- Extended Formulation: Defined
by a feasible polytope P, and a way
of encoding instances ® as a
(linear) objective function wg.

- Optimize objective (wg, x)
(depending on @) over P.



Extended Formulation and Sherali-Adams Relaxation

- Extended Formulation: Defined
by a feasible polytope P, and a way

of encoding instances ® as a
(linear) objective function wg.
Q

- Optimize objective (wg, x)
(depending on @) over P.

Image from - Introduce additional variables y.
[Fiorini—Rothvoss—Tiwari—l1] Opt|m|ze over polytope
P={x | dy Ex+ Fy=g,y >0}.
Size equals

##variables 4 #constraints.



Extended Formulation and Sherali-Adams Relaxation

- Extended Formulation: Defined
by a feasible polytope P, and a way

of encoding instances ® as a
(linear) objective function wg.
Q

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with

Image from . n t
variables = 2%
[Fiorini-Rothvoss-Tiwari-11] * (t)




Extended Formulation and Sherali-Adams Relaxation

- Extended Formulation: Defined
by a feasible polytope P, and a way

of encoding instances ® as a
(linear) objective function wg.
Q

- Sherali-Adams: A Sherali-Adams
of level t is an Extended

Formulation with

Image from . n t
variables = 2%
[Fiorini-Rothvoss-Tiwari-11] * (t)

- Variables: x(s.), [S] < t,
o€ {0,113,



Extended Formulation and Sherali-Adams Relaxation

EF: - Extended Formulation: Defined
by a feasible polytope P, and a way

of encoding instances ® as a
(linear) objective function wg.
Q

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
#variables = (7) - 2°.

T Feasible point in SA(t): Family
{Ds}s|<¢ of consistent distribution
with Ds a distribution on {0,1}>.



Extended Formulation and Sherali-Adams Relaxation

EF: - Extended Formulation: Defined
by a feasible polytope P, and a way

of encoding instances ® as a
(linear) objective function wg.
Q
TP

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
SA: #variables = (1) - 2°.

SQDT - Feasible point in SA(t): Family

{Ds}s|<¢ of consistent distribution

Basic: with Ds a distribution on {0,1}°.

G G - Similarly, for Basic LP solution.



Result




Result




Result

Main Theorem: For
all CSPs, if Ba-
sic LP has integral-
ity gap of (c,s)
then for all ¢ >
0, there exist large
enough instance(s)
with integrality gap
of (c —¢e,s +¢) for

SA(O:(log n)).




Result

With [Kothari-
Meka-Raghavendra-
17]:  For all CSPs,
if Basic LP has
(c,s) gap, then
so does any LP

Extended For-
mulation of size
nO(logn)

Ignoring € losses.




Hard Instance

Basic:
G

G

SA:



Hard Instance

Basic:
G

SA:
G

QD o, 7
Use the hard instance ®( of the basic relaxation as template to
build the new hard instance on n variables and m = A - n
constraints.




Hard Instance

#tvariables = n and #constraints=m=A - n.




Hard Instance

#tvariables = n and #constraints=m=A - n.

Xg ssssessss by - Foreach variable in ®g, create
X3 eeseesense by bucket with large number of
X7 eececeeee by . i blec
X6 eeccccooe py ’
X5 XYY Y YYY Y I
X4 XYY Y YY Y Y WA
X3 XYY Y YYY Y I8
X2 XYY YY Y Y W,
X1 XYY YYYYY N
b

n/9



Hard Instance

#tvariables = n and #constraints=m=A - n.

X9
Xg
X7
X6
X5
Xa
X3
X2
X1

ssssessss by - Foreach variable in ®g, create

eeeeecsee by  bucket with large number of

sevseeses by ariaples.
eeccccooe py

esssessss by - Independently, sample each
eeeveeeee h, constraint as:

XYY Y YYY Y I8

XYY YY Y Y W,

XYY YYYYY N

n/9



Hard Instance

#tvariables = n and #constraints=m=A - n.

X9
Xg
X7
X6
X5
X4
X3
X2
X1

eecccseee by - For each variable in ®g, create

eeeeecsee by  bucket with large number of

sevseeses by ariaples.
eeccccooe py

esssessss by - Independently, sample each
eeeveeeee h, constraint as:

XYY Y YYY Y I8
XYY YY Y Y W,
XYY YYYYY N

n/9

e Sample constraint C from ®g.



Hard Instance

#tvariables = n and #constraints=m=A - n.

X9 sessessss hy - FoOr each variable in ®g, create
X3 eeseesense by bucket with large number of
X7 seceesese by ariables.
X6 eecccce0e by
X5 esssessss by - Independently, sample each
X4 eeesecese b, constraint as:
X3 seescsses by e Sample constraint C from ®g.
X2 XYY YY Y Y W, . .
% e For each variable x in S¢, choose

1 XYY YYYYY N

Y« € By, u.aur.
o

n/9



Hard Instance

#tvariables = n and #constraints=m=A - n.

X9
Xg
X7
X6
X5
X4
X3
X2
X1

eecopqecee by - For each variable in ®g, create
bucket with large number of
variables.

- Independently, sample each
constraint as:

eedecccce h
XYY YY Y Y W,
XYY YYYYY N

e Sample constraint C from ®g.

e For each variable x in S¢, choose
Y« € By, u.aur.

n/9 o Put the constraint C on the

variables {yy}xes.-



Hard Instance

#tvariables = n and #constraints=m=A - n.

- For each variable in ®g, create

X9
X8 bucket with large number of
X variables.
X6
X5 - Independently, sample each
X4 constraint as:
X3 e Sample constraint C from .
X2 e For each variable x in S¢, choose
X1 Seeceoe b C

® Y« € By, u.aur.

0 n/9 o Put the constraint C on the

variables {yx}xes..

W.h.p., the instance hypergraph generated has o(n) cycles of
length at most 7 log n for n > 0.



Hard Instance

#tvariables = n and #constraints=m=A - n.

- For each variable in ®g, create

X9
X8 bucket with large number of
X variables.
X6
X5 - Independently, sample each
X4 constraint as:
X3 e Sample constraint C from .
X2 e For each variable x in S¢, choose
X1 Seeceoe b C

® Y« € By, u.aur.

0 n/9 o Put the constraint C on the

variables {yx}xes..
W.h.p., the instance hypergraph generated has o(n) cycles of
length at most nlog n for n > 0. Remove one constraint from
every small cycle and get an instance of girth nlog n.



Overview - Completeness

Instance:

Consistent Distributions:



Overview - Completeness

Instance:

Consistent Distributions:

G o,

Step 2: Construction of consistent

distribution — Conditioning
and propagating.




Overview - Completeness

Instance: Consistent Distributions:
QD ». 7

Step 1: Consistent Low-Diameter
Decompositions.

Step 2: Construction of consistent
distribution — Conditioning
and propagating.



Step 1: Requirements

o A family of distributions, {Cs}s/<¢



Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph.



Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.



Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

@ Minimize the quantity: the probability of a hyperedge being
cut. Target = ¢.



Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

o Consistency:

Figure: SC T

@ Minimize the quantity: the probability of a hyperedge being
cut. Target = ¢.



Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

o Consistency:

Figure: SC T

@ Minimize the quantity: the probability of a hyperedge being
cut. Target = ¢.



Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

o Consistency:

Figure: SC T

@ Minimize the quantity: the probability of a hyperedge being
cut. Target = ¢.



Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

o Consistency:

/ N\
D)
\ /

Figure: SC T

@ Minimize the quantity: the probability of a hyperedge being
cut. Target = e.



Step 2: Conditioning and Propagation

Assume: ¢ =1

Construction of Dg:

- Sample a partition P of S from
Cs.

AN



Step 2: Conditioning and Propagation

Assume: ¢ =1

Construction of Dg:
- Sample a partition P of S from
Cs.
- For each cell T of P, construct

tree Ts by connecting all shortest
paths. Root the tree arbitrarily.




Step 2: Conditioning and Propagation

Assume: ¢ =1

Construction of Dg:
- Sample a partition P of S from
Cs.
- For each cell T of P, construct

tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each Ts

o condition and propagate
Cl‘ : 7777>C2 assignments in Ts using the local

distribution from basic relaxation.



Step 2: Conditioning and Propagation

Assume: ¢ =1

Construction of Dg:

- Sample a partition P of S from
Cs.

- For each cell T of P, construct
tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each Ts
condition and propagate
assignments in Ts using the local
distribution from basic relaxation.




Step 2: Conditioning and Propagation

Assume: ¢ =1

Construction of Dg:

- Sample a partition P of S from
Cs.

- For each cell T of P, construct
tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each Ts
condition and propagate
assignments in Ts using the local
distribution from basic relaxation.




Step 2: Conditioning and Propagation

Assume: ¢ =1

® [ Construction of Dg:
- Sample a partition P of S from
° ° CS-
- For each cell T of P, construct

tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

- Independently, for each Ts
condition and propagate
assignments in 75 using the local
distribution from basic relaxation.

- For cell T, retain only the
assignments to variables in T.



Step 2: Conditioning and Propagation

Assume: ¢ =1

® [ Construction of Dg:
- Sample a partition P of S from

° ° CS-

- For each cell T of P, construct
tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

@
(4 @
(4 (4
- Independently, for each Ts

condition and propagate
assignments in 75 using the local
distribution from basic relaxation.

The cut constraints may
not be satisfied.

- For cell T, retain only the
assignments to variables in T.



Step 2: Conditioning and Propagation

Assume: ¢ =1

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of
root.

Construction of Dg:

Sample a partition P of S from
Cs.

For each cell T of P, construct
tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

Independently, for each Ts
condition and propagate
assignments in 75 using the local
distribution from basic relaxation.

For cell T, retain only the
assignments to variables in T.



Step 2: Conditioning and Propagation

Assume: ¢ =1

® [ Construction of Dg:
- Sample a partition P of S from

° ° CS-

- For each cell T of P, construct
tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

@
(4 @
(4 (4
- Independently, for each Ts

condition and propagate
assignments in 75 using the local
distribution from basic relaxation.

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of

- For cell T, retain only the
root.

assignments to variables in T.
High girth + consistent low-diameter decomposition = Consistent
Distribution.



Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.




Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)

w so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a

rotation invariant, oblivious decompo-

sition of sphere into low diameter com-
ponents.




Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)

w so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a

rotation invariant, oblivious decompo-

sition of sphere into low diameter com-
ponents.




Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.




Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.




Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.




Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?



Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?

Questions?



Other Dichotomy Results

e [Raghavendra-08]: Assuming Unique Games Conjecture, either
a basic SDP achieves a (c, s)-approximation for a CSP or it is
NP-hard to do so (for th



Other Dichotomy Results

e [Raghavendra-08]: Assuming Unique Games Conjecture, either
a basic SDP achieves a (c, s)-approximation for a CSP or it is
NP-hard to do so (for th

e [Raghavendra-Steurer-09]: (For Unique Games) If a basic

SDP has gap of (c, s) then so does (loglog n)%—levels of mixed
relaxation.



Other Dichotomy Results

e [Raghavendra-08]: Assuming Unique Games Conjecture, either
a basic SDP achieves a (c, s)-approximation for a CSP or it is
NP-hard to do so (for th

e [Raghavendra-Steurer-09]: (For Unique Games) If a basic

SDP has gap of (c, s) then so does (loglog n)%—levels of mixed
relaxation.

@ This result If basic LP relaxation has a gap of (c,s), then so
does O(log n)-level SA.



