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MAX k-CSP

- n variables taking values in some finite domains.
- m constraints: each is a non-negative k-ary function.

- Satisfy as many as possible.

Max-3-SAT Max-Cut
1
X1V x2 V Xi9 X2 X1 # X0
x3 V Xg V X3 X X2 # X5
x5 V X7 V Xo X3 # X4
X5 X7 X3 .
X6

Approximation Problem: Approximate the fraction of constraints
simultaneously satisfiable.
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MAX k-CSP (f): for i-th constraint, let S¢, := (xi,,- -, x;, ). Then:

Ci = f(xi, + by, -+ ,xi, + bj,) = Z f(a+ bc,) *X(Sc,0) »
a€{0,1}°Ci
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- Optimize objective (wg, x)
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Extended Formulation and Sherali-Adams Relaxation

EF: - Extended Formulation: Defined
by a feasible polytope P, and a way

of encoding instances ® as a
(linear) objective function wg.
Q
TP

- Sherali-Adams: A Sherali-Adams
of level t is an Extended
Formulation with
SA: #variables = (1) - 2°.

SQDT - Feasible point in SA(t): Family

{Ds}s|<¢ of consistent distribution

Basic: with Ds a distribution on {0,1}°.

G G - Similarly, for Basic LP solution.
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Result

Main Theorem: For
all CSPs, if Ba-
sic LP has integral-
ity gap of (c,s)
then for all ¢ >
0, there exist large
enough instance(s)
with integrality gap
of (c —¢e,s +¢) for

SA(O:(log n)).




Result

With [Kothari-
Meka-Raghavendra-
17]:  For all CSPs,
if Basic LP has
(c,s) gap, then
so does any LP

Extended For-
mulation of size
nO(logn)

Ignoring € losses.
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SA:
G

QD o, 7
Use the hard instance ®( of the basic relaxation as template to
build the new hard instance on n variables and m = A - n
constraints.
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#tvariables = n and #constraints=m=A - n.

X9
Xg
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X4
X3
X2
X1

eecopqecee by - For each variable in ®g, create
bucket with large number of
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Hard Instance

#tvariables = n and #constraints=m=A - n.

- For each variable in ®g, create

X9
X8 bucket with large number of
X variables.
X6
X5 - Independently, sample each
X4 constraint as:
X3 e Sample constraint C from .
X2 e For each variable x in S¢, choose
X1 Seeceoe b C

® Y« € By, u.aur.

0 n/9 o Put the constraint C on the

variables {yx}xes..
W.h.p., the instance hypergraph generated has o(n) cycles of
length at most nlog n for n > 0. Remove one constraint from
every small cycle and get an instance of girth nlog n.
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Overview - Completeness

Instance: Consistent Distributions:
QD ». 7

Step 1: Consistent Low-Diameter
Decompositions.

Step 2: Construction of consistent
distribution — Conditioning
and propagating.
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Step 1: Requirements

o A family of distributions, {Cs}s/<¢

@ Cs: a distribution supported on partitions of S into
low-diameter (not necessarily connected) components in the
hypergraph. Target diameter = girth/100.

o Consistency:

/ N\
D)
\ /

Figure: SC T

@ Minimize the quantity: the probability of a hyperedge being
cut. Target = e.
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Step 2: Conditioning and Propagation

Assume: ¢ =1

® [ Construction of Dg:
- Sample a partition P of S from

° ° CS-

- For each cell T of P, construct
tree Ts by connecting all shortest
paths. Root the tree arbitrarily.

@
(4 @
(4 (4
- Independently, for each Ts

condition and propagate
assignments in 75 using the local
distribution from basic relaxation.

The cut constraints may
not be satisfied. The dis-
tribution for any tree is in-
dependent of the choice of

- For cell T, retain only the
root.

assignments to variables in T.
High girth + consistent low-diameter decomposition = Consistent
Distribution.
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Construction of Step 1

Charikar-Makarychev-Makarychev-09:
Can define a metric on the hypergraph
(that grows with hypergraph distance)
so that restriction on any small set is
isometrically embeddable on sphere.

Charikar et al. 1998: There exists a
rotation invariant, oblivious decompo-
sition of sphere into low diameter com-
ponents.

The probability of cutting a hyperedge
dictates the size of the sets we can han-
dle.
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Conclusion

- We prove a dichotomy result for all CSPs for linear
programming relaxations.

- The result can also be interpreted as reducing the problem of
showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?

Questions?
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Other Dichotomy Results

e [Raghavendra-08]: Assuming Unique Games Conjecture, either
a basic SDP achieves a (c, s)-approximation for a CSP or it is
NP-hard to do so (for th

e [Raghavendra-Steurer-09]: (For Unique Games) If a basic

SDP has gap of (c, s) then so does (loglog n)%—levels of mixed
relaxation.

@ This result If basic LP relaxation has a gap of (c,s), then so
does O(log n)-level SA.



