Strong Direct Sum for Randomized Query Complexity

Eric Blais
University of Waterloo

Joshua Brody
Swarthmore College

Conference on Computational Complexity
New Brunswick, New Jersey
July 18, 2019
Outline

• Introduction
• Strong Direct Sum
• Query Resistance
• Separation Theorem
• Open Problems
Direct Sum Theorems

Does computing $f(x)$ on k copies scale with k?
Direct Sum Theorems

Does computing $f(x)$ on k copies scale with k?

Direct Sum Theorem: Computing k copies of f requires k times the resources.

Direct Product Theorem: Success prob. of computing k copies of f with $<< k$ resources is $2^{-Ω(k)}$.
Direct Sum Theorems

Does computing $f(x)$ on k copies scale with k?

Direct Sum Theorem: Computing k copies of f requires k times the resources.

Direct Product Theorem: Success prob. of computing k copies of f with $\ll k$ resources is $2^{-\Omega(k)}$.

Strong Direct Sum: computing k copies of f w/error ε requires $\gg k$ times the resources.
Our Main Results

Strong Direct Sum for average query complexity:
For any f and any k, computing f^k satisfies:
\[\bar{R}_\varepsilon(f^k) = \Theta(k \bar{R}_{\varepsilon/k}(f)) \]

Separation Theorem: for all $\varepsilon > 2^{-n^{1/3}}$, there is total function $f : \{0,1\}^n \to \{0,1\}$ such that $\bar{R}_\varepsilon(f) = \Theta(R(f) \log(1/\varepsilon))$

Corollary: There is f such that $R_\varepsilon(f^k) = \Theta(k \log(k) R_\varepsilon(f))$
Query Complexity

aka Decision Tree Complexity
Query Complexity

aka Decision Tree Complexity

Decision Tree for \(f: \{0,1\}^n \rightarrow \{0,1\} \):

- internal nodes labeled w/input bits \(x_i \)
- leaves labeled w/output or \text{ABORT}
- \(\text{cost}(T,x) \): depth of \(T \) on input \(x \)

Randomized DT: distribution \(A \) on decision trees

- \(\text{cost}(A) = \max_{T,x} \text{cost}(T,x) \)
- \(\text{acost}(A) = \max_x E_{T \sim A} [\text{cost}(T, x)] \)
Query Complexity

aka Decision Tree Complexity

Decision Tree for \(f: \{0,1\}^n \rightarrow \{0,1\} \):
- internal nodes labeled w/input bits \(x_i \)
- leaves labeled w/output or ABORT
- \(\text{cost}(T,x) \): depth of \(T \) on input \(x \)

Randomized DT: distribution \(A \) on decision trees
- \(\text{cost}(A) = \max_{T,x} \text{cost}(T,x) \)
- \(\text{acost}(A) = \max_x \mathbb{E}_{T \sim A} [\text{cost}(T, x)] \)

Distributional QC \(D^u_{\delta,\varepsilon}(f) \): \[\min \mathbb{E}_x[\text{cost}(T,x)] \text{ s.t. } \Pr[\text{abort}] \leq \delta \text{ and } \Pr[\text{error}] \leq \varepsilon \]

Randomized QC \(R_{\delta,\varepsilon}(f) \): minimum cost of randomized algorithm s.t.
\[\Pr[\text{abort}] \leq \delta \text{ and } \Pr[\text{error}] \leq \varepsilon \]

Average case Randomized QC \(\bar{R}_{\varepsilon}(f) \):
minimum acost of randomized algorithm s.t. \(\Pr[\text{error}] \leq \varepsilon \)
Basic Results

Minimax Lemma: \(\max_{\mu} D_{2\delta,2\varepsilon}^{\mu}(f) \leq R_{\delta,\varepsilon}(f) \leq \max_{\mu} D_{\delta/2,\varepsilon/2}^{\mu}(f) \)

Error Reduction: \(R_{o(1/t), o(1/t)}(f) \leq O(\log(t) R_{1/2, 1/3}(f)) \)

Average QC vs Aborts: \(\delta R_{\delta,\varepsilon}(f) \leq \bar{R}_{\varepsilon}(f) \leq R_{\delta,(1-\delta)\varepsilon}(f)/(1-\delta) \)
Basic Results

Average QC vs Aborts: \(\delta R_{\delta,\varepsilon}(f) \leq \tilde{R}_\varepsilon(f) \leq R_{\delta,(1-\delta)\varepsilon}(f)/(1-\delta) \)

First inequality:
Algorithm \(A \): \(\varepsilon \)-error,
\(\text{acost}(A) = q \)

Second inequality:
Algorithm \(B' \): \((1-\delta)\varepsilon \)-error,
\(\delta \)-abort, \(q \) queries.
Basic Results

Average QC vs Aborts: \(\delta R_{\delta, \varepsilon}(f) \leq \bar{R}_\varepsilon(f) \leq R_{\delta, (1-\delta)\varepsilon}(f)/(1-\delta) \)

First inequality:
Algorithm \(A \): \(\varepsilon \)-error,
\[\text{acost}(A) = q \]

Algorithm \(B(x) \) {
 emulate \(A(x) \)
 abort if > \(q/\delta \) queries
}

Second inequality:
Algorithm \(B' \): \((1-\delta)\varepsilon \)-error,
\(\delta \)-abort, \(q \) queries.

Algorithm \(A'(x) \) {
 repeat:
 emulate \(B'(x) \)
 until no aborts
}
Previous Work

Information Complexity: [MWY13, MWY15]
- strong direct sum for information complexity w/aborts + error
- applications for streaming/sketching algorithms

Direct Product Theorem: [Drucker 12]
- direct product theorems for randomized query complexity

Separation Theorems: [GPW15, ABBLSS17]
- query complexity separations based on pointer functions
- polynomial separation $R_0(f)$ vs $R_\varepsilon(f)$

Direct Sum Theorems:
- [Jain Klauck Santha 10]: $R_\varepsilon(f^k) \geq \delta^2 k R_\varepsilon/(1-\delta) + \delta(f)$
- [Ben-David Kothari 18]: $\overline{R}_\varepsilon(f^k) \geq k \overline{R}_\varepsilon(f)$
Our Results

Strong Direct Sum Theorem: \(D_{0,\varepsilon}^{\mu}(f^k) = \Omega(kD_{1/5,40\varepsilon/k}(f)) \)

Separation Theorem: There is \(f : \{0,1\}^N \rightarrow \{0,1\} \) such that for all \(\varepsilon > 2^{-N^{1/3}} \), we have \(R_{\delta,\varepsilon}(f) = \Omega(R_{1/3}(f)\log(1/\varepsilon)) \)

Corollary: There is \(f \) such that \(R_{1/3}(f^k) = \Omega(k\log(k)R_{\varepsilon}(f)) \)
Our Results

Strong Direct Sum Theorem: \[D_{0, \varepsilon}^{\mu k}(f^k) = \Omega(k D_{1/5, 4\varepsilon/k}^{\mu}(f)) \]

Separation Theorem: There is \(f : \{0,1\}^N \rightarrow \{0,1\} \) such that for all \(\varepsilon > 2^{-N^{1/3}} \), we have \(R_{\delta, \varepsilon}(f) = \Omega(R_{1/3}(f) \log(1/\varepsilon)) \)

Corollary: There is \(f \) such that \(R_{1/3}(f^k) = \Omega(k \log(k) R_{\varepsilon}(f)) \)

proof: \[R_{1/3}(f^k) \geq R_{0,1/3}(f^k) = \Omega(k R_{1/5,40/3k}(f)) = \Omega(k \log(k) R_{1/3}(f)) \]
Our Results

Strong Direct Sum Theorem: \[D_{0,\varepsilon}^\mu(f^k) = \Omega(kD_{1/5,40}\varepsilon/k(f)) \]

Separation Theorem: There is \(f : \{0,1\}^N \rightarrow \{0,1\} \) such that for all \(\varepsilon > 2^{-N^{1/3}} \), we have \(R_{\delta,\varepsilon}(f) = \Omega(R_{1/3}(f)\log(1/\varepsilon)) \)

Corollary: There is \(f \) such that \(R_{1/3}(f^k) = \Omega(k\log(k)R_{\varepsilon}(f)) \)

proof: \(R_{1/3}(f^k) \geq R_{0,1/3}(f^k) = \Omega(kR_{1/5,40/3k}(f)) = \Omega(k\log(k)R_{1/3}(f)) \)

Key Technical result:

Query-resistant codes: probabilistic encoding \(G: \Sigma \rightarrow \{0,1\}^N \) such that \(N/3 \) bits of \(G(x) \) needed to learn anything about \(x \)
Outline

• Introduction
• Strong Direct Sum
• Query Resistance
• Separation Theorem
• Open Problems
Strong Direct Sum Theorem: \(D_{0,\varepsilon}(f^k) = \Omega(kD_{1/5,40\varepsilon/k}(f)) \)

Let \(A \) be an \(\varepsilon \)-error algorithm for \(f^k \) with \(q \) queries.

Goal: \((\varepsilon/k) \)-error algorithm \(B \) for \(f \) with \(q/k \) queries.

Let \(y = (y_1, \ldots, y_k) \).

\textbf{Embed}(y, i, x) := y, \text{ w/i-th coord replaced by } x.
Strong Direct Sum Theorem: \(D_{0,\epsilon}(f^k) = \Omega(kD_{1/5,40\epsilon/k}(f)) \)

Let \(A \) be an \(\epsilon \)-error algorithm for \(f^k \) with \(q \) queries.
Goal: \((\epsilon/k)\)-error algorithm \(B \) for \(f \) with \(q/k \) queries.
Let \(y = (y_1, \ldots, y_k) \).
\(\text{Embed}(y,i,x) := y, \) w/i-th coord replaced by \(x \).

```
Algorithm B(x) {
    carefully select y,i
    emulate A(Embed(y,i,x))
    abort if problems found
}
```
Strong Direct Sum Theorem: \(D_{0,\varepsilon}^k(f^k) = \Omega(kD_{1/5,40\varepsilon/k}^\mu(f)) \)

Let \(A \) be an \(\varepsilon \)-error algorithm for \(f^k \) with \(q \) queries.
Goal: \((\varepsilon/k) \)-error algorithm \(B \) for \(f \) with \(q/k \) queries.
Let \(y = (y_1, \ldots, y_k) \).
\(\text{Embed}(y,i,x) := y, \text{w/i-th coord replaced by } x. \)

Algorithm \(B(x) \)
{
carefully select \(y,i \)
emulate \(A(\text{Embed}(y,i,x)) \)
abort if problems found
}

Intuition: success on typical coordinate \(\geq 1 - 10\varepsilon/k \)
else overall success \(< (1 - 10\varepsilon/k)^k < 1 - \varepsilon \)
Strong Direct Sum Theorem: \(D_{0,\varepsilon}^{\mu}(f^k) = \Omega(kD_{1/5,40\varepsilon/k}(f)) \)

\[
1 - \varepsilon \leq \Pr_{Y \sim \mu^k}[A(Y) = f^k(Y)] = \prod_{i=1}^{k} \Pr_{Y \sim \mu^k}[A(Y)_i = f^k(Y)_i \mid A(Y)_{<i} = f^k(Y)_{<i}]
\]
Strong Direct Sum Theorem: \(D_{0,\varepsilon}(f^k) = \Omega(kD_{1/5,40\varepsilon/k}(f)) \)

\[
1 - \varepsilon \leq \Pr_{Y \sim \mu^k}[A(Y) = f^k(Y)] = \prod_{i=1}^{k} \Pr_{Y \sim \mu^k}[A(Y)_i = f^k(Y)_i | A(Y)_{<i} = f^k(Y)_{<i}]
\]

Want: \(i \) such that

1. (1) conditional error very low:
 \[
 \Pr[A \text{ err. on } i\text{-th coord.} | \text{correct on } < i] \leq 10 \varepsilon/k
 \]

2. (2) Expected # queries on i-th coord not too high:
 \[
 E[\text{queries on } i\text{-th coord.}] \leq 3q/k
 \]
Strong Direct Sum Theorem: \(D_{0,\varepsilon}^{\mu k}(f^k) = \Omega(k D_{1/5,40\varepsilon/k}^{\mu}(f)) \)

\[
1 - \varepsilon \leq \Pr_{Y \sim \mu^k} [A(Y) = f^k(Y)] = \prod_{i=1}^k \Pr_{Y \sim \mu^k} [A(Y)_i = f^k(Y)_i \mid A(Y)_{<i} = f^k(Y)_{<i}]
\]

Want: \(i \) such that

1. Conditional error very low:
 \(\Pr[A \text{ err. on } i\text{-th coord.} \mid \text{correct on } < i] \leq 10 \varepsilon/k \)

2. Expected # queries on i-th coord not too high:
 \(\mathbb{E}[\text{queries on } i\text{-th coord.}] \leq 3q/k \)

Fact: at least \(\frac{2k}{3} \) coords. satisfy (1)

Fact: at least \(\frac{2k}{3} \) coords. satisfy (2)

\(\implies \) There is \(i^* \) satisfying (1) and (2). \(Y^* := \text{Embed}(Y, i^*, x) \).
Strong Direct Sum Theorem: \(D_{0,\varepsilon}^{\mu,k}(f^k) = \Omega(kD_1^{\mu,1/5,40\varepsilon/k}(f)) \)

This \(i^* \) satisfies:

1. \(E_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_i \neq f^k(Y^*)_i]] \leq \varepsilon \)

2. \(E_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_i \neq f^k(Y^*)_i \mid A(Y^*)_i = f^k(Y^*)_i] \] \(\leq 10 \varepsilon/k \)

3. \(E_{Y \sim \mu^k}[E_X[q_{i^*}(Y^*)]] \leq 3q/k \)
Strong Direct Sum Theorem: \[D_{0, \varepsilon}^\mu(f^k) = \Omega(kD_{1/5, 40\varepsilon/k}(f)) \]

This \(i^* \) satisfies:

1. \(E_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_{<i^*} \neq f^k(Y^*)_{<i^*}]] \leq \varepsilon \)
2. \(E_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_{i^*} \neq f^k(Y^*)_{i^*} \mid A(Y^*)_{<i^*} = f^k(Y^*)_{<i^*}] \leq 10 \varepsilon/k \)
3. \(E_{Y \sim \mu^k}[E_x[q_{i^*}(Y^*)]] \leq 3q/k \)

Markov Inequality: there is \(y^* \) such that

1. \(\Pr_{x \sim \mu}[A(Y^*)_{<i^*} \neq f^k(Y^*)_{<i^*}] \leq 4\varepsilon \)
2. \(\Pr_{x \sim \mu}[A(Y^*)_{i^*} \neq f^k(Y^*)_{i^*} \mid A(Y^*)_{<i^*} = f^k(Y^*)_{<i^*}] \leq 40 \varepsilon/k \)
3. \(E_x[q_{i^*}(Y^*)] \leq 12q/k \)
Algorithm B(x) {
 z := EMBED(y*,i*,x)
 emulate A(z)
 abort if \(q_{i^*}(z) > 120q/k \)
 abort if \(A(z)_{<i^*} \neq f^k(z)_{<i^*} \)
}

Strong Direct Sum Theorem: \(D_{0,\epsilon}(f^k) = \Omega(kD_{1/5,40\epsilon/k}(f)) \)

This \(i^* \) satisfies:

1. \(\mathbb{E}_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_{<i^*} \neq f^k(Y^*)_{<i^*}]] \leq \epsilon \)
2. \(\mathbb{E}_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_{i^*} \neq f^k(Y^*)_{i^*} | A(Y^*)_{<i^*} = f^k(Y^*)_{<i^*}] \leq 10 \frac{\epsilon}{k} \)
3. \(\mathbb{E}_{Y \sim \mu^k}[\mathbb{E}_{X}[q_{i^*}(Y^*)]] \leq 3q/k \)

Markov Inequality: there is \(y^* \) such that

1. \(\Pr_{x \sim \mu}[A(Y^*)_{<i^*} \neq f^k(Y^*)_{<i^*}] \leq 4\epsilon \)
2. \(\Pr_{x \sim \mu}[A(Y^*)_{i^*} \neq f^k(Y^*)_{i^*} | A(Y^*)_{<i^*} = f^k(Y^*)_{<i^*}] \leq 40 \frac{\epsilon}{k} \)
3. \(\mathbb{E}_{X}[q_{i^*}(Y^*)] \leq 12q/k \)
Algorithm B(x) {
 z := EMBED(y*,i*,x)
 emulate A(z)
 abort if q_{i*}(z) > 120q/k
 abort if A(z)_{i*} ≠ f^k(z)_{i*}
}

Strong Direct Sum Theorem: \(D_{0, \varepsilon}(f^k) = \Omega(kD_{1/5, 40\varepsilon/k}(f)) \)

This \(i^* \) satisfies:
1. \(E_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_{i^*} ≠ f^k(Y^*)_{i^*}]] ≤ \varepsilon \)
2. \(E_{Y \sim \mu^k}[\Pr_{x \sim \mu}[A(Y^*)_{i^*} ≠ f^k(Y^*)_{i^*} | A(Y^*)_{i^*} = f^k(Y^*)_{i^*}]] ≤ 10 \frac{\varepsilon}{k} \)
3. \(E_{Y \sim \mu^k}[E_X[q_{i^*}(Y^*)]]] ≤ 3q/k \)

Markov Inequality: there is \(y^* \) such that
1. \(\Pr_{x \sim \mu}[A(Y^*)_{i^*} ≠ f^k(Y^*)_{i^*}] ≤ 4\varepsilon \)
2. \(\Pr_{x \sim \mu}[A(Y^*)_{i^*} ≠ f^k(Y^*)_{i^*} | A(Y^*)_{i^*} = f^k(Y^*)_{i^*}] ≤ 40 \frac{\varepsilon}{k} \)
3. \(E_X[q_{i^*}(Y^*)] ≤ 12q/k \)

Abort probability: \(\frac{1}{10} + 4\varepsilon < \frac{1}{5} \)
Error probability: \(40\varepsilon/k \)
Outline

• Introduction
• Strong Direct Sum
• **Query Resistance**
• Separation Theorem
• Open Problems
Pointer Function

\[\text{PtrFcn}: \Sigma^{n \times n} \rightarrow \{0,1\} \]

each cell \(z \in \Sigma \) has:
- value \(b \in \{0,1\} \)
- \(n \) row ptrs \(\text{row}_1(z), \ldots, \text{row}_n(z) \)
- back ptr \(\text{back}(z) \)

\[\text{PtrFcn}(X) := 1 \text{ iff } \]
- \(\exists \) unique col \(j^* \): \(\text{val}(z_{i,j^*}) = 1 \) for all \(i \).
- \(\exists \) special cell \(z_{i^*,j^*} \). all ptrs \textbf{NULL} in col \(j^* \) except for special cell
- special cell pts to \textbf{0}-value \textit{linked cells} in each other col
- exactly half of \textit{linked cells} point back to \textit{special cell}

[GPW15, ABBLSS17, BB19]
Query Resistant Codes

Definition: a δN-query resistant code of Σ is a set of distribs $\{G(x)\}$

- For each $x \in \Sigma$, $G(x)$ is a distribution on $\{0,1\}^N$
- $\{\text{support}(G(x)) : x \in \Sigma\}$ partition $\{0,1\}^N$
- For all $S \subseteq [N]$ with $|S| \leq \delta N$, distributions $G(x)|_S = G(x')|_S$
- “decoding function” $h(y) := x$ iff $y \in \text{support}(G(x))$
Definition: a δN-query resistant code of Σ is a set of distributions $\{G(x)\}$

- For each $x \in \Sigma$, $G(x)$ is a distribution on $\{0,1\}^N$
- $\{\text{support}(G(x)) : x \in \Sigma\}$ partition $\{0,1\}^N$
- For all $S \subseteq [N]$ with $|S| \leq \delta N$, distributions $G(x)|_S = G(x')|_S$
- “decoding function” $h(y) := x$ iff $y \in \text{support}(G(x))$

Theorem: [Chor et al. 85] For any Σ, there is a $(N/3)$-query resistant code with $N = 12.5 \log(|\Sigma|)$. Furthermore, conditional distributions $G(x)|_S$ are uniform.
For $f : \Sigma^n \rightarrow \{0,1\}$, define $F : \{0,1\}^{nN} \rightarrow \{0,1\}$ as:

$$F(y_1,\ldots,y_n) := f(h(y_1),\ldots,h(y_n))$$

Theorem: $R_{\delta,\epsilon}(f) \leq (3/N)R_{\delta,\epsilon}(F)$
Query Resistance

For $f : \Sigma^n \rightarrow \{0,1\}$, define $F : \{0,1\}^{nN} \rightarrow \{0,1\}$ as:

$$F(y_1,\ldots,y_n) := f(h(y_1),\ldots, h(y_n))$$

Theorem: $R_{\delta,\varepsilon}(f) \leq (3/N)R_{\delta,\varepsilon}(F)$

Proof: Let A be a (q, δ, ε)-algorithm for F.

Algorithm $B(x_1,\ldots, x_n)$ {

 emulate $A(G(x_1),\ldots, G(x_n))$

 when A queries $G(x_i)$ for k-th time:

 if $k < N/3$, sample $G(x_i)$ cond. on prev. queries

 if $k = N/3$, sample x_i

 if $k \geq N/3$, sample $G(x_i)$ cond. on prev. history.

}
Open Problems

1. *Characterize* functions robust to **aborts**

2. **Strong Direct Sum** for Composed Functions
 (a) XOR Lemma
 (b) Strong Direct Sum for MAJ

3. How does $R_{\delta,\varepsilon}(f)$ compare to other QC measures?
Thanks!

NOTE: Swarthmore has a tenure-track opening for fall 2020!