Reordering Rule Makes OBDD Proof Systems Stronger Sam Buss¹ Dmitry Itsykson² Alexander Knop¹ Dmitry Sokolov³ ¹University of California, San Diego ²St. Petersburg Department of V.A. Steklov Institute of Mathematics ³KTH Royal Institute of Technology Computational Complexity Conference June 23, 2018 - OBDDs represent Boolean functions $\{0,1\}^n \rightarrow \{0,1\}$; - lacksquare π is an ordering of variables; - if i < j then $x_{\pi(j)}$ cannot appear before $x_{\pi(i)}$. ## OBDD proofs of unsatisfiability: - sequence of OBDDs: - $D_1, D_2, D_3, \ldots, D_m;$ - $D_m \equiv 0$; - OBDDs for axioms. #### Rules: - \bullet \land (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \land D_j);$ - w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$ - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different Join rule can be applied only for OBDDs in the same order. Sokolov D. | OBDD Proof Systems 2 OBDD proofs of unsatisfiability: - sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$; - $D_m \equiv 0$; - OBDDs for axioms. #### Rules - \bullet \land (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \land D_j);$ - w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$ - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different OBDD proofs of unsatisfiability: - sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$; - $D_m \equiv 0$; - OBDDs for axioms. #### Rules: - $lack \wedge$ (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$ - w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$ - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different OBDD proofs of unsatisfiability: - sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$; - $D_m \equiv 0$; - OBDDs for axioms. ### Rules: - $lack \wedge$ (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$ - w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$ - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different OBDD proofs of unsatisfiability: - sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$; - $D_m \equiv 0$; - OBDDs for axioms. ### Rules: - lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$ - \blacksquare w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$; - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different. OBDD proofs of unsatisfiability: - sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$; - $D_m \equiv 0$; - OBDDs for axioms. ### Rules: - lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$ - w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$; - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different. OBDD proofs of unsatisfiability: - sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$; - $D_m \equiv 0$; - OBDDs for axioms. ## Rules: - lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$ - w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$; - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different. OBDD proofs of unsatisfiability: - sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$; - $D_m \equiv 0$; - OBDDs for axioms. #### Rules: - lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$ - w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$; - r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different. - $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$ - Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$; - they want to compute f(x, y); - assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's; - **communication complexity of** f **is at most log** S + 1; - EQ: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$; - if all x_i 's precede all y_j 's in π , then size of any π -OBDD for EQ(x,y) is at least 2^n ; - \exists short OBDD for EQ(x, y) in the order $x_1, y_1, x_2, y_2, \dots, x_n, y_n$. - $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$ - Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$; - they want to compute f(x, y); - assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's; - communication complexity of f is at most $\log S + 1$; - EQ: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$ - if all x_i 's precede all y_j 's in π , then size of any π -OBDD for $\mathbb{EQ}(x,y)$ is at least 2^n ; - \exists short OBDD for EQ(x, y) in the orde $x_1, y_1, x_2, y_2, \dots, x_n, y_n$. - $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$ - Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$; - they want to compute f(x, y); - assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's; - communication complexity of f is at most $\log S + 1$; - EQ: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$; - if all x_i 's preced all y_j 's in π , then size of any π -OBDD for $\mathbb{EQ}(x,y)$ is at least 2^n ; - \exists short OBDD for EQ(x, y) in the orde $x_1, y_1, x_2, y_2, \dots, x_n, y_n$. - $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$ - Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$; - they want to compute f(x, y); - assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's; - **communication complexity of** f is at most log S + 1; - EQ: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$; - if all x_i 's precede all y_j 's in π , then size of any π -OBDD for EQ(x, y) is at least 2^n ; - \exists short OBDD for EQ(x, y) in the order $x_1, y_1, x_2, y_2, \dots, x_n, y_n$. - [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* - unsatisfiable linear systems over F₂ have short proofs; - [Segerlind 07] $2^{n^{2(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs; - **I** [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(Λ, w)-proofs; - [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* . - [this paper] OBDD(\wedge , w,r) is exponentially stronger than OBDD(\wedge , w). - [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size; - unsatisfiable linear systems over F₂ have short proofs; - [Segerlind 07] $2^{n^{n(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs; - [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs; - [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* . - [this paper] $OBDD(\wedge, w, r)$ is exponentially stronger than $OBDD(\wedge, w)$. - [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size; - unsatisfiable linear systems over \mathbb{F}_2 have short proofs; - [Segerlind 07] $2^{n^{2(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs; - [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs; - [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* . - [this paper] $OBDD(\wedge, w, r)$ is exponentially stronger than $OBDD(\wedge, w)$. - [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size; - unsatisfiable linear systems over \mathbb{F}_2 have short proofs; - [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs; - [Krajíček 08] $2^{n^{\Sigma(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs; - [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* . - [this paper] $OBDD(\wedge, w, r)$ is exponentially stronger than $OBDD(\wedge, w)$. - [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP^* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size; - unsatisfiable linear systems over \mathbb{F}_2 have short proofs; - [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs; - [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs; - [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* . - [this paper] OBDD(\wedge , w,r) is exponentially stronger than OBDD(\wedge , w). - [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP_nⁿ⁺¹ has proofs of poly size; - unsatisfiable linear systems over \mathbb{F}_2 have short proofs; - [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs; - [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs; - [this paper] $OBDD(\wedge, w)$ is exponentially stronger than CP^* . - [this paper] OBDD(\wedge , w,r) is exponentially stronger than OBDD(\wedge , w). - [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size; - unsatisfiable linear systems over \mathbb{F}_2 have short proofs; - [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs; - [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs; - [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* . - [this paper] $OBDD(\land, w, r)$ is exponentially stronger than $OBDD(\land, w)$. Proof of Clique-Coloring in semantic calculus \mapsto mon. circuit, separating (k+1)-cliques from k-col. graphs. # Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08) $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$. - \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$. - $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one Proof of Clique-Coloring in semantic calculus \mapsto mon. circuit, separating (k+1)-cliques from k-col. graphs ## Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08) $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$. - \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$. - $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one # Krajíček's monotone interpolation Proof of Clique-Coloring in semantic calculus \mapsto mon. circuit, separating (k+1)-cliques from k-col. graphs # Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08) $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$. - \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$. - $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one # Krajíček's monotone interpolation Proof of Clique-Coloring in semantic calculus \mapsto mon. circuit, separating (k+1)-cliques from k-col. graphs # Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08) $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$. - \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$. - $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one. Proof of Clique-Coloring in semantic calculus \mapsto mon. circuit, separating (k+1)-cliques from k-col. graphs ## Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08) $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$. - \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$. - $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one. Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order. - Linear inequalities with small coefficients can be represented by OBDDs. - [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof. - LS⁴ operates with degree 4 inequalities. The proof can be simulated by OBDD(∧, w) in an appropriate order. - OBDD(∧, w) is exponentially stronger than CP*; - OBDD(\wedge , w) does not have monotone interpolation property. Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order. - Linear inequalities with small coefficients can be represented by OBDDs. - [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof. - LS⁴ operates with degree 4 inequalities. The proof can be simulated by OBDD(∧, w) in an appropriate order. - OBDD(∧, w) is exponentially stronger than CP*; - OBDD(\wedge , w) does not have monotone interpolation property. Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order. - Linear inequalities with small coefficients can be represented by OBDDs. - [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof. - LS⁴ operates with degree 4 inequalities. The proof can be simulated by $OBDD(\land, w)$ in an appropriate order. - OBDD(∧, w) is exponentially stronger than CP*; - OBDD(\wedge , w) does not have monotone interpolation property. Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order. - Linear inequalities with small coefficients can be represented by OBDDs. - [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof. - LS^4 operates with degree 4 inequalities. The proof can be simulated by $OBDD(\wedge, w)$ in an appropriate order. - OBDD(∧, w) is exponentially stronger than CP*; - OBDD(\wedge , w) does not have monotone interpolation property. Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order. - Linear inequalities with small coefficients can be represented by OBDDs. - [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof. - LS^4 operates with degree 4 inequalities. The proof can be simulated by $OBDD(\wedge, w)$ in an appropriate order. - OBDD(\wedge , w) is exponentially stronger than CP*; - ullet OBDD(\wedge , w) does not have monotone interpolation property. - Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$; - lacksquare z_1,\ldots,z_ℓ encode a permutation $\pi\in S_n$ $$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in S_n} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$ ## Theorem (Segerlind 07) $$m = \Omega(n^3)$$ Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \lor_m)$ is hard $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$ #### $\mathsf{Theorem}$ $\tau_{\text{Clique-ColoringoV}_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$. Sokolov D. | OBDD Proof Systems 7, - Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$; - z_1, \ldots, z_ℓ encode a permutation $\pi \in S_n$; $$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in S_n} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$ # Theorem (Segerlind 07) $$m = \Omega(n^3)$$ Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_m)$ is hard $\exists \pi, \varphi$ is hard for $\pi\text{-OBDD}(\wedge, w)$ #### $\mathsf{Theorem}$ $\tau_{\text{Clique-Coloringo}\vee_m}$ is hard for $OBDD(\wedge, w)$ but easy fo $OBDD(\wedge, w, r)$. - Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$; - z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$; $$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$ # Theorem (Segerlind 07) $$m = \Omega(n^3)$$ Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_m)$ is hard $\exists \pi, \varphi$ is hard for $\pi\text{-OBDD}(\wedge, w)$ #### $\mathsf{Theorem}$ $\tau_{\text{Clique-Coloringo}\vee_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$. - Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$; - z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$; $$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$ ## Theorem (Segerlind 07) $$m = \Omega(n^3)$$ Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_m)$ is hard. $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$ #### $\mathsf{Theorem}$ $\tau_{\text{Clique-Coloringo}\vee_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$. - Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$; - z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$; $$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$ # Theorem (Segerlind 07) $$m = \Omega(n^3)$$ Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_{\mathbf{m}})$ is hard. $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$ #### Theorem $\tau_{\text{Clique-ColoringoV}_m}$ is hard for $OBDD(\land, w)$ but easy for $OBDD(\land, w, r)$. # $OBDD(\land, w, r)$ is strictly stronger than $OBDD(\land, w)$ - Transform $\varphi(x_1, \ldots, x_n)$ to $\tau_{\varphi}(z_1, \ldots, z_{\ell}, x_1, \ldots, x_n)$; - z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$; $$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$ #### Theorem (Segerlind 07) $$m = \Omega(n^3)$$ Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_{\mathbf{m}})$ is hard. $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$ #### $\mathsf{Theorem}$ $\tau_{\text{Clique-ColoringoV}_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$. - [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution; - [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$: - [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs; - [Itsykson, Knop, Romaschenko, S 17] PHP_n^{n+1} and Tseitin formulas are hard for $OBDD(\land, r)$; - [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧); - [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w). - [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution; - [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$; - [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs; - [Itsykson, Knop, Romaschenko, S 17] PHP_n^{n+1} and Tseitin formulas are hard for $OBDD(\land, r)$; - [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧); - [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w). - [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution; - [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$; - [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs; - [Itsykson, Knop, Romaschenko, S 17] PHP_n^{n+1} and Tseitin formulas are hard for $OBDD(\land, r)$; - [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧); - [this paper] OBDD(\wedge ,r) is q.p. stronger than OBDD(\wedge ,w). - [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution; - [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$; - [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs; - [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r); - [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧); - [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w). - [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution; - [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$: - [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs; - [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r); - [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧); - [this paper] $OBDD(\land, r)$ is q.p. stronger than $OBDD(\land, w)$. - [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution; - [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$: - [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs; - [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r); - [this paper] $OBDD(\land)$ is q.p. stronger than CP; - [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w). - [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution; - [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$: - [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs; - [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r); - [this paper] $OBDD(\land)$ is q.p. stronger than CP; - [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w). - Each node has a charge c(v); - \blacksquare each edge has a variable x_e ; - each node has a constraint: $\bigoplus_{e \in E_v} x_e = c(v);$ - $\bigoplus_{v} c(v) = 1 \Rightarrow \mathsf{TS}_{G} \text{ is unsat.}$ - Any unsatisfiable Tseitin formula TS_G has an $OBDD(\land)$ -proof of size $2^{O(n)}$ in any order. - [...; Ben-Sasson, Wigderson 02; ...] Resolution width of TS_{K_n} is $Ω(n^2)$. - Each node has a charge c(v); - \blacksquare each edge has a variable x_e ; - each node has a constraint: $\bigoplus_{e \in E_v} x_e = c(v);$ - $\bigoplus_{v} c(v) = 1 \Rightarrow \mathsf{TS}_G \text{ is unsat.}$ - Any unsatisfiable Tseitin formula TS_G has an $OBDD(\land)$ -proof of size $2^{O(n)}$ in any order. - [...; Ben-Sasson, Wigderson 02; ...] Resolution width of TS_{K_n} is $\Omega(n^2)$. #### Theorem (Garg, Göös, Kamath, S 18) Any CP-proof of $\varphi \circ \operatorname{Ind}_{n^{300}}$ has size at least $n^{\Theta(w(\varphi))}$, where $w(\varphi)$ is a resolution width of φ . ## Corollary - Any CP-proof of $TS_{K_{\log(n)}} \circ Ind_{n^{300}}$ has size at least $\log(n)^{\log^2(n)}$; - there is an OBDD(\land)-proof of $TS_{K_{\log(n)}} \circ Ind_{n^{300}}$ of size $\log(n)^{\log(n)}$. ## Open problems - Better separations between $OBDD(\land)$ and resolution. - Lower bounds for $OBDD(\land, w, r)$. - A simulation of $OBDD(\land, w)$ by Frege?