

Reordering Rule Makes OBDD Proof Systems Stronger

Sam Buss¹

Dmitry Itsykson²

Alexander Knop¹

Dmitry Sokolov³

¹University of California, San Diego

²St. Petersburg Department of V.A. Steklov Institute of Mathematics

³KTH Royal Institute of Technology

Computational Complexity Conference June 23, 2018

- OBDDs represent Boolean functions $\{0,1\}^n \rightarrow \{0,1\}$;
- lacksquare π is an ordering of variables;
- if i < j then $x_{\pi(j)}$ cannot appear before $x_{\pi(i)}$.

OBDD proofs of unsatisfiability:

- sequence of OBDDs:
 - $D_1, D_2, D_3, \ldots, D_m;$
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules:

- \bullet \land (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \land D_j);$
- w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different

Join rule can be applied only for OBDDs in the same order.

Sokolov D. | OBDD Proof Systems 2

OBDD proofs of unsatisfiability:

- sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$;
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules

- \bullet \land (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \land D_j);$
- w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different

OBDD proofs of unsatisfiability:

- sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$;
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules:

- $lack \wedge$ (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$
- w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different

OBDD proofs of unsatisfiability:

- sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$;
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules:

- $lack \wedge$ (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$
- w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different

OBDD proofs of unsatisfiability:

- sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$;
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules:

- lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$
- \blacksquare w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$;
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different.

OBDD proofs of unsatisfiability:

- sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$;
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules:

- lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$
- w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$;
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different.

OBDD proofs of unsatisfiability:

- sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$;
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules:

- lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$
- w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$;
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different.

OBDD proofs of unsatisfiability:

- sequence of OBDDs: $D_1, D_2, D_3, \dots, D_m$;
- $D_m \equiv 0$;
- OBDDs for axioms.

Rules:

- lacksquare \wedge (join): $D_i, D_j \Rightarrow D_k \equiv (D_i \wedge D_j);$
- w (weakening): $D_i \Rightarrow D_j, D_i \models D_j$;
- r (reordering): $D_i \Rightarrow D_j, D_j \equiv D_i$ but orders of variables are different.

- $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$
- Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$;
- they want to compute f(x, y);
- assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's;
- **communication complexity of** f **is at most log** S + 1;
- EQ: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$;
- if all x_i 's precede all y_j 's in π , then size of any π -OBDD for EQ(x,y) is at least 2^n ;
- \exists short OBDD for EQ(x, y) in the order $x_1, y_1, x_2, y_2, \dots, x_n, y_n$.

- $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$
- Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$;
- they want to compute f(x, y);
- assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's;
- communication complexity of f is at most $\log S + 1$;
- EQ: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$
- if all x_i 's precede all y_j 's in π , then size of any π -OBDD for $\mathbb{EQ}(x,y)$ is at least 2^n ;
- \exists short OBDD for EQ(x, y) in the orde $x_1, y_1, x_2, y_2, \dots, x_n, y_n$.

- $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$
- Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$;
- they want to compute f(x, y);
- assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's;
- communication complexity of f is at most $\log S + 1$;
- EQ: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$;
- if all x_i 's preced all y_j 's in π , then size of any π -OBDD for $\mathbb{EQ}(x,y)$ is at least 2^n ;
- \exists short OBDD for EQ(x, y) in the orde $x_1, y_1, x_2, y_2, \dots, x_n, y_n$.

- $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\};$
- Alice knows $x_1, ..., x_n \in \{0, 1\}$, Bob knows $y_1, ..., y_m \in \{0, 1\}$;
- they want to compute f(x, y);
- assume that f has an OBDD of size S in some order in that all x_i's preced all y_i's;
- **communication complexity of** f is at most log S + 1;
- EQ: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$, EQ $(x,y) = 1 \Leftrightarrow x = y$;
- if all x_i 's precede all y_j 's in π , then size of any π -OBDD for EQ(x, y) is at least 2^n ;
- \exists short OBDD for EQ(x, y) in the order $x_1, y_1, x_2, y_2, \dots, x_n, y_n$.

- [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP*
- unsatisfiable linear systems over F₂ have short proofs;
- [Segerlind 07] $2^{n^{2(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs;
- **I** [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(Λ, w)-proofs;
- [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* .
- [this paper] OBDD(\wedge , w,r) is exponentially stronger than OBDD(\wedge , w).

- [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size;
- unsatisfiable linear systems over F₂ have short proofs;
- [Segerlind 07] $2^{n^{n(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs;
- [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs;
- [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* .
- [this paper] $OBDD(\wedge, w, r)$ is exponentially stronger than $OBDD(\wedge, w)$.

- [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size;
- unsatisfiable linear systems over \mathbb{F}_2 have short proofs;
- [Segerlind 07] $2^{n^{2(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs;
- [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs;
- [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* .
- [this paper] $OBDD(\wedge, w, r)$ is exponentially stronger than $OBDD(\wedge, w)$.

- [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size;
- unsatisfiable linear systems over \mathbb{F}_2 have short proofs;
- [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs;
- [Krajíček 08] $2^{n^{\Sigma(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs;
- [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* .
- [this paper] $OBDD(\wedge, w, r)$ is exponentially stronger than $OBDD(\wedge, w)$.

- [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP^* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size;
- unsatisfiable linear systems over \mathbb{F}_2 have short proofs;
- [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs;
- [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs;
- [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* .
- [this paper] OBDD(\wedge , w,r) is exponentially stronger than OBDD(\wedge , w).

- [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP_nⁿ⁺¹ has proofs of poly size;
- unsatisfiable linear systems over \mathbb{F}_2 have short proofs;
- [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs;
- [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs;
- [this paper] $OBDD(\wedge, w)$ is exponentially stronger than CP^* .
- [this paper] OBDD(\wedge , w,r) is exponentially stronger than OBDD(\wedge , w).

- [Atserias, Kolaitis, Vardi 04] OBDD(\land , w) simulates CP* \Longrightarrow PHP $_n^{n+1}$ has proofs of poly size;
- unsatisfiable linear systems over \mathbb{F}_2 have short proofs;
- [Segerlind 07] $2^{n^{\Omega(1)}}$ lower bound for tree-like OBDD(\wedge , w)-proofs;
- [Krajíček 08] $2^{n^{\Omega(1)}}$ lower bound for dag-like OBDD(\wedge , w)-proofs;
- [this paper] $OBDD(\land, w)$ is exponentially stronger than CP^* .
- [this paper] $OBDD(\land, w, r)$ is exponentially stronger than $OBDD(\land, w)$.

Proof of Clique-Coloring in semantic calculus \mapsto

mon. circuit, separating (k+1)-cliques from k-col. graphs.

Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08)

 $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$.

- \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$.
- $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one

Proof of Clique-Coloring in semantic calculus \mapsto

mon. circuit, separating (k+1)-cliques from k-col. graphs

Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08)

 $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$.

- \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$.
- $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one

Krajíček's monotone interpolation

Proof of Clique-Coloring in semantic calculus \mapsto

mon. circuit, separating (k+1)-cliques from k-col. graphs

Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08)

 $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$.

- \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$.
- $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one

Krajíček's monotone interpolation

Proof of Clique-Coloring in semantic calculus \mapsto

mon. circuit, separating (k+1)-cliques from k-col. graphs

Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08)

 $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$.

- \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$.
- $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one.

Proof of Clique-Coloring in semantic calculus \mapsto

mon. circuit, separating (k+1)-cliques from k-col. graphs

Theorem (Atserias, Kolaitis, Vardi 04; Krajíček 08)

 $\exists \pi \text{ such that every } \pi\text{-OBDD}(\land, w)\text{-proof of Clique-Coloring}$ has size at least $2^{n^{\delta}}$.

- \forall orders π on x there is a substitution y_{π} such that $\Psi(x, y_{\pi})$ is isomorphic to $\Phi(x)$.
- $\Psi(x,y)$ is hard for all orders if $\Phi(x)$ is hard for at least one.

Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order.

- Linear inequalities with small coefficients can be represented by OBDDs.
- [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof.
- LS⁴ operates with degree 4 inequalities. The proof can be simulated by OBDD(∧, w) in an appropriate order.

- OBDD(∧, w) is exponentially stronger than CP*;
- OBDD(\wedge , w) does not have monotone interpolation property.

Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order.

- Linear inequalities with small coefficients can be represented by OBDDs.
- [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof.
- LS⁴ operates with degree 4 inequalities. The proof can be simulated by OBDD(∧, w) in an appropriate order.

- OBDD(∧, w) is exponentially stronger than CP*;
- OBDD(\wedge , w) does not have monotone interpolation property.

Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order.

- Linear inequalities with small coefficients can be represented by OBDDs.
- [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof.
- LS⁴ operates with degree 4 inequalities. The proof can be simulated by $OBDD(\land, w)$ in an appropriate order.

- OBDD(∧, w) is exponentially stronger than CP*;
- OBDD(\wedge , w) does not have monotone interpolation property.

Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order.

- Linear inequalities with small coefficients can be represented by OBDDs.
- [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof.
- LS^4 operates with degree 4 inequalities. The proof can be simulated by $OBDD(\wedge, w)$ in an appropriate order.

- OBDD(∧, w) is exponentially stronger than CP*;
- OBDD(\wedge , w) does not have monotone interpolation property.

Clique-Coloring has a polynomial $OBDD(\wedge, w)$ -proof in some order.

- Linear inequalities with small coefficients can be represented by OBDDs.
- [Hirsch, Grigoriev, Pasechnik 02] Clique-Coloring has a short LS⁴ proof.
- LS^4 operates with degree 4 inequalities. The proof can be simulated by $OBDD(\wedge, w)$ in an appropriate order.

- OBDD(\wedge , w) is exponentially stronger than CP*;
- ullet OBDD(\wedge , w) does not have monotone interpolation property.

- Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$;
- lacksquare z_1,\ldots,z_ℓ encode a permutation $\pi\in S_n$

$$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in S_n} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$

Theorem (Segerlind 07)

$$m = \Omega(n^3)$$

 Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \lor_m)$ is hard

 $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$

$\mathsf{Theorem}$

 $\tau_{\text{Clique-ColoringoV}_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$.

Sokolov D. | OBDD Proof Systems 7,

- Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$;
- z_1, \ldots, z_ℓ encode a permutation $\pi \in S_n$;

$$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in S_n} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$

Theorem (Segerlind 07)

$$m = \Omega(n^3)$$

 Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_m)$ is hard $\exists \pi, \varphi$ is hard for $\pi\text{-OBDD}(\wedge, w)$

$\mathsf{Theorem}$

 $\tau_{\text{Clique-Coloringo}\vee_m}$ is hard for $OBDD(\wedge, w)$ but easy fo $OBDD(\wedge, w, r)$.

- Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$;
- z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$;

$$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$

Theorem (Segerlind 07)

$$m = \Omega(n^3)$$

 Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_m)$ is hard $\exists \pi, \varphi$ is hard for $\pi\text{-OBDD}(\wedge, w)$

$\mathsf{Theorem}$

 $\tau_{\text{Clique-Coloringo}\vee_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$.

- Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$;
- z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$;

$$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$

Theorem (Segerlind 07)

$$m = \Omega(n^3)$$

 Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_m)$ is hard.

 $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$

$\mathsf{Theorem}$

 $\tau_{\text{Clique-Coloringo}\vee_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$.

- Transform $\varphi(x_1,\ldots,x_n)$ to $\tau_{\varphi}(z_1,\ldots,z_\ell,x_1,\ldots,x_n)$;
- z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$;

$$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$

Theorem (Segerlind 07)

$$m = \Omega(n^3)$$

 Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_{\mathbf{m}})$ is hard.

 $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$

Theorem

 $\tau_{\text{Clique-ColoringoV}_m}$ is hard for $OBDD(\land, w)$ but easy for $OBDD(\land, w, r)$.

$OBDD(\land, w, r)$ is strictly stronger than $OBDD(\land, w)$

- Transform $\varphi(x_1, \ldots, x_n)$ to $\tau_{\varphi}(z_1, \ldots, z_{\ell}, x_1, \ldots, x_n)$;
- z_1, \ldots, z_ℓ encode a permutation $\pi \in \Pi \subseteq S_n$;

$$\tau(\varphi)(z_1,\ldots,z_\ell,x_1,\ldots,x_n) = \bigwedge_{\sigma \in \Pi} \left[(z \text{ encodes } \sigma) \to \varphi\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right) \right].$$

Theorem (Segerlind 07)

$$m = \Omega(n^3)$$

 Π is a set of 2-ind. permut. on [mn] $\Rightarrow \forall \pi, \tau(\varphi \circ \vee_{\mathbf{m}})$ is hard.

 $\exists \pi, \varphi \text{ is hard for } \pi\text{-OBDD}(\land, w)$

$\mathsf{Theorem}$

 $\tau_{\text{Clique-ColoringoV}_m}$ is hard for $OBDD(\wedge, w)$ but easy for $OBDD(\wedge, w, r)$.

- [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution;
- [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$:
- [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs;
- [Itsykson, Knop, Romaschenko, S 17] PHP_n^{n+1} and Tseitin formulas are hard for $OBDD(\land, r)$;
- [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧);
- [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w).

- [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution;
- [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$;
- [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs;
- [Itsykson, Knop, Romaschenko, S 17] PHP_n^{n+1} and Tseitin formulas are hard for $OBDD(\land, r)$;
- [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧);
- [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w).

- [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution;
- [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$;
- [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs;
- [Itsykson, Knop, Romaschenko, S 17] PHP_n^{n+1} and Tseitin formulas are hard for $OBDD(\land, r)$;
- [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧);
- [this paper] OBDD(\wedge ,r) is q.p. stronger than OBDD(\wedge ,w).

- [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution;
- [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$;
- [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs;
- [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r);
- [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧);
- [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w).

- [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution;
- [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$:
- [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs;
- [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r);
- [Tveretina 17, Arxiv preprint] Resolution simulates OBDD(∧);
- [this paper] $OBDD(\land, r)$ is q.p. stronger than $OBDD(\land, w)$.

- [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution;
- [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$:
- [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs;
- [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r);
- [this paper] $OBDD(\land)$ is q.p. stronger than CP;
- [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w).

- [Groote, Zantema 03; Tveretina, Sinz, Zantema 09] OBDD(∧) does not simulate resolution;
- [Tveretina et al. 09] PHP_nⁿ⁺¹ requires OBDD(\wedge)-proofs of size $2^{\Omega(n)}$:
- [Friedman, Xu 13] random 3-CNFs are hard for restricted OBDD(∧)-proofs;
- [Itsykson, Knop, Romaschenko, S 17] PHP $_n^{n+1}$ and Tseitin formulas are hard for OBDD(\wedge , r);
- [this paper] $OBDD(\land)$ is q.p. stronger than CP;
- [this paper] OBDD(\wedge , r) is q.p. stronger than OBDD(\wedge , w).

- Each node has a charge c(v);
- \blacksquare each edge has a variable x_e ;
- each node has a constraint: $\bigoplus_{e \in E_v} x_e = c(v);$
- $\bigoplus_{v} c(v) = 1 \Rightarrow \mathsf{TS}_{G} \text{ is unsat.}$
- Any unsatisfiable Tseitin formula TS_G has an $OBDD(\land)$ -proof of size $2^{O(n)}$ in any order.
- [...; Ben-Sasson, Wigderson 02; ...] Resolution width of TS_{K_n} is $Ω(n^2)$.

- Each node has a charge c(v);
- \blacksquare each edge has a variable x_e ;
- each node has a constraint: $\bigoplus_{e \in E_v} x_e = c(v);$
- $\bigoplus_{v} c(v) = 1 \Rightarrow \mathsf{TS}_G \text{ is unsat.}$
- Any unsatisfiable Tseitin formula TS_G has an $OBDD(\land)$ -proof of size $2^{O(n)}$ in any order.
- [...; Ben-Sasson, Wigderson 02; ...] Resolution width of TS_{K_n} is $\Omega(n^2)$.

Theorem (Garg, Göös, Kamath, S 18)

Any CP-proof of $\varphi \circ \operatorname{Ind}_{n^{300}}$ has size at least $n^{\Theta(w(\varphi))}$, where $w(\varphi)$ is a resolution width of φ .

Corollary

- Any CP-proof of $TS_{K_{\log(n)}} \circ Ind_{n^{300}}$ has size at least $\log(n)^{\log^2(n)}$;
- there is an OBDD(\land)-proof of $TS_{K_{\log(n)}} \circ Ind_{n^{300}}$ of size $\log(n)^{\log(n)}$.

Open problems

- Better separations between $OBDD(\land)$ and resolution.
- Lower bounds for $OBDD(\land, w, r)$.
- A simulation of $OBDD(\land, w)$ by Frege?