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Chapter 1

Matrix and Operator Scaling

Scribed by: Clément Canonne (ccanonne@cs.columbia.edu)

Abstract

I will define the problems of matrix and operator scaling, their origins, motivations, connections
and applications. I will describe algorithms for solving both of them, explaining the similarities
and differences in their performance analyses. I will then give brief introductions to the parts
of Invariant Theory, Non-commutative fields and Quantum information theory that are used
in motivating and analyzing operator scaling, and the key notion of capacity which ties many
of the parts together. I will hint at why this new algorithm has potential to solve new non-
convex programs and exponentially large linear programs. Along the way we will encounter
more familiar problems and topics in algorithms and complexity like perfect matchings and
polynomial identity testing, and see different or more general ways to look at them.

I find it quite special that a single computational problem and algorithm for it connects so
many areas from CS and math, only some of which I will have time to describe. So far, in CS
they include algebraic complexity, optimization and formal language theory, and within Math
aspects of non-commutative algebra, Invariant theory, analysis, quantum information theory
and control theory. Some of these connections between these fields are new. Moreover, follow-up
works in a variety of natural directions, computational and mathematical, bring even more areas
to play, creates new collaborations and makes the developing area very exciting.

The structure of the notes follows the structure of the lectures, one chapter per lecture, to
make them correspond to the available videos.1 However we have added to them many details
and references missing from the lectures. They also contain a long list of (homework) problems
at all levels, some in the text itself and some in the final section, which the interested reader is
encouraged to solve.

Much of my interest and understanding in these problems is based on several joint works
with Ankit Garg, Pavel Hrubes̆, Leonid Gurvits, and Rafael Oliveira.

1Available at http://computationalcomplexity.org/Archive/2017/tutorial.html
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1.1 Symbolic Matrices

We define the central object which we will study in these lectures. Here they arise in the setting
of arithmetic complexity, and for an excellent survey of the topic, especially some models and
problems mentioned in these lectures, we refer the reader to [SY10].

Definition 1.1 (Symbolic Matrix). Let F be a field, and x = {x1, . . . , xm} be a set of variables. A
symbolic matrix is a matrix L = (`i j )1≤i , j≤n where each entry `i j (x1, . . . , xm) is a linear form in
the variables, with coefficients in F. In particular, one can write

L = A1x1 +·· ·+ Am xm ,

with A j ∈Mn(F) for all j , and consider the tuple L = (A1, . . . , Am). (Without loss of generality, in
this lectures, we can assume the A j ’s are linearly independent, and so that m ≤ n2. This will
allow us to focus on n as the main size parameter of the input.)

This tuple L, which will be the input to many problems we discuss, can be considered from
many viewpoints, each of them bringing its own insight. Viewed as a symbolic matrix, L is
non-singular if there exists M such that LM = ML = I where I is the identity matrix. As we will
see, the allowed entries of M will depend on the context.
The fundamental problem we will consider is that of singularity testing: given a symbolic matrix
L, is this matrix singular (over the appropriate field of fractions)? This problem appears in two
settings, as we see below.

Commutative case The first setting is when our variables x = {x1, . . . , xm} commute. In this case,
denoting as usual by F[x] the ring over field F of polynomials in x, and F(x) the field of rational
functions, the problem is defined as follows.

SING: given input L over m (commutative) variables, answer “Is L singular in F(x)?”
(Equivalent to asking if detL ≡ 0 over F[x].)

Let us consider the complexity of this problem.

• This problem was first put forth by Edmonds [Edm67], who asked if this problem was in P
(and we shall soon see why). Note that this is roughly the time the class P was defined, by
Edmonds and others. This question remains open!

• Lovász [Lov79] showed it was in BPP (the algorithm works by assigning random values to
the variables and evaluating the numeric determinant). This one of the earliest probabilis-
tic algorithms!

Why is his problem a big deal? Two more complexity discoveries clarified it!

• Valiant [Val79] showed that SING captures most algebraic identities mathematicians care
about, as it is (essentially) complete for testing whether a given arithmetic formula2 com-
putes the identically zero polynomial.

2More generally an ABP, namely an Arithmetic Branching Program.
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• Kabanets and Impagliazzo [KI04] showed that derandomizing SING (i.e., showing SING ∈
SUBEXP) would show that either VP 6= VNP or NEXP 6⊂ P/poly. In short, striking conse-
quences of a striking nature: a single deterministic algorithm (upper bound) for a single
(simple) problem will imply impressive lower bounds.

Responses: “hey, that looks hard, let’s not work on that” (pessimist), or, “hey, in that case let’s find
an algorithm, if that’s all it takes!” (optimist).
This is the main open problem motivating us. Unable to solve it, we move (in the best mathemat-
ical tradition) to a syntactically similar but different problem. This will open a treasure trove in
itself, and will end up teaching us some new things about SING, as we shall see later, including
an efficient deterministic approximation scheme for the rank of commutative symbolic matrices,
an approach to PIT via invariant theory.

Non-commutative case In all the above, we assumed the variables xi commute. What if they
do not? leads to different and strange world. Non-commutative version of singularity:

NC-SING: given input L (over non-commutative variables), answer “Is L singular (non
invertible) in F<(x )>?”

Here F<(x)> denotes the free skew field, a very complicated object which we will define later.
So, our computational problem is not defined yet, and certainly not motivated yet. We will see
elementary formulations of this problem as well as plenty of motivations in the sequel. Note that
there is no analog to the determinant formulation of SING. In non-commutative variables there
is no “canonical” definition of determinant. The correct notion, which is very related to taking
the inverse as we do here, is called “quasi-determinant” (a beautiful survey is here [GGRW02]).

The complexity of this problem NC-SING is what will occupy us in these lecture. The first
thing to observe is that unlike its commutative sister SING, it was not even clear, and required
hard work even to prove its decidability. Here is some of the evolution of understanding its
complexity.

• [Coh73, Coh75]: NC-SING is decidable!

• [CR99]: NC-SING ∈ PSPACE

• [GGOW16]: NC-SING ∈ P! (over fields F of characteristic 0)

• [DM15, IQS15]: NC-SING ∈ P! (over any field F)

Question 1.2 (Igor Carboni–Oliveira). Is there any hope for a parallel algorithm? (i.e., NC-SING ∈
NC?) (answer: it is known to be in RandomNC, due to a result of [DM15]).

The two polynomial time algorithms are of a very different nature: the one in [GGOW16] is
analytic in nature, and the one in [IQS15] is combinatorial / linear-algebraic. We will focus now
on developing the tools and ideas towards establishing the first polynomial time algorithm in
characteristic 0, although many are relevant also to the second algorithm that works for all fields
(indeed, the stronger results in Invariant Theory which enabled the second were discovered a few
weeks after the first algorithm was published). The second algorithm has another advantage –
it efficiently certifies its output! However, the first has extra features and computes certain
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quantities that are meaningless in positive characteristics, and these have extra motivations as
we shall see at the end of the last lecture.

To explain “operator scaling”, the main algorithm, we first survey its precursor, “matrix
scaling.”

1.2 The Commutative Case, SING, Perfect Matchings, and Ma-
trix Scaling

The problem SING was first introduced in [Edm67], because of its connection to the perfect
matching problem in bipartite graphs. To explain it, recall that to an n ×n bipartite graph G
corresponds a Boolean matrix AG with entries (i , j ) set to 1 if (i , j ) is an edge and zero otherwise;
then, one can observe that G has a perfect matching iff perm(AG ) > 0.
Now, considering the symbolic matrix LG corresponding to setting the (i , j ) entry to xi j when
there is an edge (i , j ) in G (and 0 otherwise), we further get that

G has a perfect matching ⇔ perm(AG ) > 0 ⇔ det(LG ) 6≡ 0.

This establishes the perfect matching problem in bipartite graphs as a very special case SING, in
which the linear forms in every entry of the symbolic matrix are either 0 or a distinct variable.
This viewpoint will soon lead us to a very different algorithm for matching than the familiar one
taught in algorithms courses.

1.2.1 Matrix Scaling ([Sin64, LSW00])

To introduce the main algorithm in these lectures, for the operator scaling problem, we will first
develop an algorithm for a simpler (and older) one, matrix scaling. This will turn out to also
solve (in a very different way than usual) the perfect matching problem in bipartite graphs. We
begin by defining the (exact) matrix scaling problem.

(EXACT ) MATRIX SCALING: Given A = (ai j )1≤i , j≤n ∈Mn(R) with non-negative entries, deter-
mine whether there exists R,C diagonal such that B := R AC is doubly stochastic, i.e. such
that 1= B1= B T1.

Remark 1.3. A generalization of the above question is that of (r,c)-scaling, where one asks that
the sum of row and column vectors be equal to some prescribed vectors r,c , respectively (instead
of 1 and 1).

Why should we care about Matrix Scaling? Well,

• Many practical linear system solvers start by scaling (if possible) their input matrix as a
pre-processing step, to improve stability of the numerical algorithm3

3It turns out that scaling to double stochastic may not always improve numerical stability of a linear system
solver [ALOW]. Its prevalent use seems to suggest people believe it helps in many inputs.
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• Applications to signal processing

• Implications to deterministic approximation of the permanent

• Perfect matching algorithms

• Connections to hyperbolic polynomials

• etc.

This is the exact matrix scaling problem. More relevant to us, and indeed to many of the
applications above, is its approximate version, which only require that B be arbitrarily close to a
doubly stochastic matrix.

MATRIX SCALING: Given A = (ai j )1≤i , j≤n ∈ Mn(R) with non-negative entries, determine
whether for every ε ∈ (0,1) there exists Rε,Cε diagonal such that Bε := RεACε is approximately
doubly stochastic: (1−ε)1≤ B1,B T1≤ (1+ε)1.

When a matrix A can be scaled as above to an approximately doubly stochastic matrix, we
say that A is scalable.

Exercise 1.4. With the same notations as before, G has a perfect matching ⇔ perm(AG ) > 0 ⇔
det(LG ) 6≡ 0 ⇔ AG is scalable.

The intuition for the algorithm, informally presented below, is quite simple and the only
surprising part is that it actually works. It is basically a greedy approach. Since we have two sets
of conditions to satisfy (namely, normalized rows, and normalized columns), a natural idea is to
alternately satisfy the one at a time, and repeat this process: given A = (ai j )1≤i , j≤n ∈Mn(R) with
non-negative entries,

1. Normalize the rows of A so that they all sum to 1, getting a matrix A1

2. Normalize the columns of A1 so that they all sum to 1, getting a matrix A2

3. Repeat these two steps some number of time.

This type of approach, of iteratively satisfying or optimizing only some of the constraints in a
complex problems, and then others, is often called “alternate minimization.” There are many
examples in which this general heuristic is used in optimization. However, sometimes it does
not converge – or even if it does, may not converge quickly. A famous example is the Lemke–
Houson algorithm for finding a Nash equilibrium in 2-player games, which alternatingly picks
an optimal response for one player given strategy of the other. This algorithm does converges,
but in worst-case exponential time. This one will be efficient.

Let us define the algorithm more formally, and then explain its rather simple analysis. Define
the scaling factors for a matrix A as R(A) := diag(R1, . . . ,Rn) and C (A) := diag(C1, . . . ,Cn), where
Ri (resp. Ci ) is the i -th row (resp. column) sum of A. After each iteration we check how close the
current matrix is to a doubly-stochastic one, and if it is, we halt. We refer to this algorithm as
“Algorithm S,” for Sinkhorn.4

4We will see later the analogue in the non-commutative case, “Algorithm G”, for Gurvits).

9



Algorithm 1 Algorithm S
Require: A = (ai j )1≤i , j≤n ∈Mn(R) with non-negative entries

1: for poly(n) steps do
2: A ← R(A)−1 · A
3: if ‖C (A)− I‖2 ≤ 1p

n
then

4: return yes . perm(A) > 0
5: end if
6: A ← A ·C (A)−1

7: if ‖R(A)− I‖2 ≤ 1p
n

then
8: return yes . perm(A) > 0
9: end if

10: end for
11: return no . perm(A) = 0

We will only aim at a polynomial time upper bound on the complexity of Algorithm S. A lot of
effort has been invested in making matrix scaling very efficient; here is some partial list of results
(see the survey [Ide16]).

• [Sin64]: poly(b,1/ε) where b is the bit size of the instance (Sinkhorn only proved that
his iterative algorithm converges while the first general complexity analysis appeared
in [GY98] and [LSW00])

• [KK96]: poly(b, log(1/ε))

• [LSW00]: poly(n, log(1/ε)) (a strongly polynomial time algorithm)

• [CMTV17, ALOW17]: near linear time

Analysis of the algorithm of [LSW00] Denote the intermediate matrices produced by the algo-
rithm execution by A(0) = A, . . . , A(t ), . . . . For simplicity, assume first that A is {0,1}-valued.5 Our
progress measure will be perm(A(t )); here is the outline of the three stages of the analysis.

1. perm(A(t )) ≤ 1 for all t ≥ 1 (as the columns or rows sum to 1);

2. perm(A(1)) ≥ n−n ;

3. For t ≥ 1, perm(A(t+1))
perm(A(t ))

≥ exp(1/6n). This is because, for even t (and analogously for odd t ),

perm(A(t+1))

perm(A(t ))
=∏

j

1

R j (A(t ))
≥ exp(1/6n) .

Exercise 1.5. Show that if perm(A) = 0 then Algorithm 1 does not converge.

Exercise 1.6. Show 2.

Exercise 1.7. Show 3 using the fact that column sums are 1 and ‖R(A)− I‖2 ≥ 1p
n

.

5Otherwise, in the time analysis, replace n by the total bit size of the matrix entries (where we assume rational
input).
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Remark 1.8. Following [GY98], define the capacity of a non-negative matrix A as

cap(A) := inf
x>0

∏n
j=1(Ax) j∏n

j=1 x j
.

Then, instead of the permanent, one can use the capacity as progress measure in Algorithm 1.
(And will have the advantage, as we shall see, to generalize to the operator scaling question.)

Remark 1.9. The reason for the previous remark is that permanent and capacity have the same
multiplicative property: if one obtains B by multiplying a row or a column of a matrix A by any
positive scalar λ, then perm(B)

perm(A) =λ= cap(B)
cap(A) .

Exercise 1.10. Prove the fact above about the multiplicative property property of permanent
and capacity.

1.3 The non-commutative case, NC-SING, and Operator Scal-
ing ([Gur04, GGOW16])

In this section we will introduce the operator scaling problem and an algorithm for it, both as
(quantum) generalizations of the matrix scaling problem and the algorithm from the previous
section. Note that until now we viewed L (or a tuple of matrices) as a symbolic matrix. We will
now view it as an operator. Throughout these lectures we will see other ways in which to interpret
it in various areas, and these viewpoints of the same object are essential to the theory presented
here. (In the rest of this chapter, we take F=C.) The following table provides a parallel between
the concepts used matrix scaling and the operator scaling settings.

Matrix scaling Operator scaling
L1 L2

vectors matrices
positive PSD

A non-negative matrix L = (A1, . . . , Am), m-tuple of matrices
R,C diagonal R,C ∈ GLn(F)

R AC = B doubly stochastic Bi = R Ai C doubly stochastic (see below)

Definition 1.11 (CPM and Double Stochasticity). L = (A1, . . . , Am) defines a map by setting

L(P ) :=∑
i

Ai PA†
i

for P ∈ Mn(C). This map is called a completely positive map (CPM), and one of its properties
is that P < 0 implies L(P ) < 0. (Note that we also have the dual operator L†(P ) := ∑

i A†
i PAi ,

analogous to matrix transpose.) Then, L is said to be (exactly) doubly stochastic if L(I ) = I and
L†(I ) = I .
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Remark 1.12. One can generalize the above to ask that L(P ) =Q and L†(I ) = I , for some prescribed
PSD matrices P,Q. This is known as the Schrödinger bridge problem, analogous to the (r,c)-
scaling problem in classical matrix scaling, which generalizes (1,1), or doubly stochastic scaling.

Definition 1.13 (Approximate Double Stochasticity). Let L = (A1, . . . , Am) be a CPM, and define

R(L) :=∑
i

Ai A†
i = L(I )

C (L) :=∑
i

A†
i Ai = L†(I )

L is approximately doubly stochastic scalable if, for every ε ∈ (0,1) there exists Rε,Cε such that,
for Lε := RεLCε, we have ‖R(Lε)− I‖2 ≤ ε and ‖C (Lε)− I‖2 ≤ ε.

OPERATOR SCALING: Given a tuple of matrices L = (A1, . . . , Am), determine whether L is
approximately doubly stochastic scalable; that is, if for every ε ∈ (0,1) there exists Rε,Cε such
that, for Lε := RεLCε, we have ‖R(Lε)− I‖2 ≤ ε and ‖C (Lε)− I‖2 ≤ ε.

We get the following immediate generalization of the matrix scaling algorithm, alternatingly
normalizing the operator or its dual. Note that taking square roots is possible and efficient as
these are PSD matrices.

Algorithm 2 Algorithm G
Require: L = (A1, . . . , Am) a CPM

1: for t steps do
2: L ← R(L)−1/2 ·L
3: if ‖C (L)− I‖2 ≤ 1p

n
then

4: return yes . cap(L) > 0
5: end if
6: L ← L ·C (L)−1/2

7: if ‖R(L)− I‖2 ≤ 1p
n

then
8: return yes . cap(L) > 0
9: end if

10: end for
11: return no . cap(L) = 0

In order to analyze the convergence properties of this algorithm, we will need a notion of
progress measure. (Recall that in the classical case, this was the permanent, or equivalently
the capacity of the intermediate matrices.) This leads to defining the quantum analogue of the
capacity:

Definition 1.14 (Capacity of a CPM). Let L = (A1, . . . , Am) be a CPM. Then, the capacity of L is
defined as

cap(L) := inf
PÂ0

detL(P )

detP
.
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Note that, in this case, we have cap(RLC )
cap(L) = det(R)2 det(C )2.

Remark 1.15. Computing capacity is not a convex optimization problem; however, [GGOW16]
gave an FPTAS for computing it.

Theorem 1.16 ([Gur04]). Algorithm 2 converges on input L iff cap(L) > 0.

Outline. As in the classical case, we have three main steps to the proof. Denote the intermediate
operators produced by the algorithm execution by L(0) = L, . . . ,L(t ), . . . .

1. cap(L(t )) ≤ 1 for all t ≥ 1;

2. cap(L(1)) > 0;

3. For t ≥ 1, cap(L(t+1))
cap(L(t ))

≥ exp(1/6n).

Exercise 1.17. Show that if cap(L) = 0 then Algorithm 2 does not converge.

Exercise 1.18. Show item 2 using a proof similar to that of the matrix scaling case (Exercise 1.7).

Theorem 1.19 ([GGOW16]). Algorithm 2 converges on input L in polynomial time iff cap(L) > 0.

Outline. As in the classical case, we have three main steps to the proof. The proof is similar as
that of the previous theorem, but the key is to improve item 2 to show that cap(L(1)) ≥ n−O(n)

(assuming L has low bit-complexity).

We note that such a bound on cap(L(1)) was proved in [Gur04] for the special case that L (as a
space of matrices) contains a non-singular matrix (in other words, L 6∈ SING). The main hurdle
will be generalizing it to all L for which cap(L) > 0, which will turn out equivalent to L 6∈ NC-SING.

This key to the analysis will require important ideas and results from both non-commutative
algebra (the theory of free skew fields) and from commutative invariant theory (mostly of quiver
representations), which we will discuss in the subsequent lectures.

1.4 Exercises

Problem 1.20 (Hall’s theorem). Prove Hall’s bipartite matching theorem. It says that an n ×n
bipartite graph has a perfect matching iff for every subset S of vertices on the left side, |N (S)| ≥ |S|,
where N (S) denotes the neighbours of S.

Problem 1.21 (Doubly stochastic matrices). Prove that the polytope of doubly stochastic matri-
ces is the convex hull of permutation matrices.

Problem 1.22. Prove that cap(A) > 0 iff the bipartite graph defined by support of A has a perfect
matching.

Problem 1.23 (Capacity of doubly stochastic matrices). Prove that the capacity of a doubly
stochastic matrix is 1.
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Chapter 2

Algebraic Complexity and Invariant Theory
Scribed by: Pritish Kamath (pritish@mit.edu)

Abstract

I will start with background in algebraic complexity motivating commutative and non-commutative
PIT. I will introduce the commutative and non-commutative rank of symbolic matrices, and
their relation. Some characterization of non-commutative rank will in particular clarify why the
operator scaling algorithm efficiently solves a large family of systems of quadratic equations.
I will then survey basic definitions and problems in Invariant Theory, including the nullcone,
invariant rings and their degrees, and then prove degree bounds on the group action we care
about. Then we shall see how to use this information to analyze the operator scaling algorithm.

2.1 Brief Recap & Outline of this lecture

Gurvits [Gur04] showed that Algorithm 2 converges iff cap(L) 6= 0 (see Theorem 1.16), where
cap(L) was defined as,

cap(L) = inf
PÂ0

det(L(P ))

det(P )
To prove polynomial time convergence of Algorithm 2, we need to prove the following theorem.

Theorem 2.1. For any L = (A1, . . . , Am) ∈ (Mn(C))m , if cap(L) > 0, then cap(L) > exp(−nO(1)).

Remark 2.2. In the above theorem, we implicitly assume that L has “low" bit complexity (poly(n)).
Also we will only apply the above theorem for normalized L i.e. C (L) = I (or R(L) = I ). So we will
assume that C (L) = I (or R(L) = I ) holds for any L that we consider throughout this lecture.

Indeed, proving Theorem 2.1 is the main result of [GGOW16], and will be the main focus
of this lecture. To prove this, we will take several detours into non-commutative algebra and
commutative invariant theory.1

We mention a basic fact due to Gurvits, regarding cap(L)2.

1As it turns out, invariant theory is not needed to prove Theorem 2.1, as it is shown in the most recent version
of [GGOW16].

2It will be extremely useful in the application to Brascamp-Lieb ineuqalities at the end of the lectures, yielding an
alternative proof of their feasibility criteria.

15
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Fact 2.3. cap(L) = 0 iff L is rank decreasing, where, we say that L is rank decreasing if there exists
some P < 0, such that rank(L(P )) < rank(P ).

Exercise 2.4. Prove Fact 2.3. [Hint: See Problem 2.37.]

We will see later that L is rank decreasing iff L ∈ NC-SING. As mentioned before, we want
to show that if cap(L) > 0, then Algorithm 2 converges in polynomially many steps. Gurvits
established this result for the specific (yet important) case where L is commutatively singular
(recall definition below).

Definition 2.5. Let L(x) =∑m
i=1 Ai xi . We say that L ∈ SING if det(L(x)) ≡ 0 (over F[x]), i.e. if L is

not invertible over F(x).

Theorem 2.6 ([Gur04]). If L is commutatively non-singular (i.e. L ∉ SING), then cap(L) > n−O(n),
which implies convergence of Algorithm 2 in t < nO(1) steps.

Exercise 2.7. Prove Theorem 2.6. [Hint: See [Gur04, GGOW16].]

The above theorem will actually be very crucial to proving the more general Theorem 2.1.
A useful observation is that if L is doubly stochastic then cap(L) = 1. Moreover, this is

numerically robust, in the sense that cap(L) is close to 1 iff L is close to being doubly stochastic.
Also, recall that cap(RLC )

cap(L) = det(R)2 ·det(C )2 (as seen in Lecture 1). Thus if we keep track of the
matrices we are pre and post-multiplying with in Algorithm 2, then we can recover cap(L) to
arbitrary accuracy.
The main results of [GGOW16] can be summarized as:

• NC-SING is decidable in polynomial time, i.e. NC-SING ∈ P

• There is an FPTAS for computing cap(L).

• Algorithm 2 is “continuous” in its input, and can be used to provide quantitative estimates
for continuity of capacity.

The last two items will be useful in the very end of the lectures for the application Brascamp-Lieb
inequalities.

As mentioned earlier, to prove Theorem 2.1, we are going to take detours into non-commutative
algebra and commutative invariant theory.

2.2 Non-commutative Algebraic Circuits

An algebraic circuit C is defined as a directed acyclic graph (DAG), with

• input nodes labeled by variables x1, . . . , xn or field elements

• all other nodes labeled by (+) or (×).

An algebraic formula is a circuit, where the DAG is in fact a tree. The size of a circuit/formula
is the number of nodes (alternatively, the number of edges, but this is at most quadratic in the
number of nodes).
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We interpret the circuit C as computing a polynomial in the natural inductive way, where
a (+) gate with inputs computing f and g computes the polynomial f + g , and a (×) gate with
inputs computing f and g computes the polynomial f · g .

An algebraic circuit can be interpreted in two ways: (i) variables {xi } commute, i.e. x1x2

and x2x1 are the same monomial and (ii) variables {xi } don’t commute, i.e. x1x2 and x2x1 are
different monomials.

While proving super-polynomial lower bounds for commutative circuits or even formulas is
open, Nisan [Nis91] proved exp(n) lower bounds for non-commutative formulas (more strongly,
non-commutative algebraic branching program) for an explicit polynomial (in particular, also
for the permanent). While we have had this progress for 26 years, we still don’t have super
polynomial lower bounds for non-commutative circuits.

Hrubeš and Wigderson [HW15] considered non-commutative circuits with division (÷) gates.
While this makes proving lower bounds only harder, the hope was that such circuits might add
more structure and can give new insights. In the commutative world, note that when we allow
(÷), each gate computes a rational function instead of a polynomial. Here, we require that the
circuit never divides by the zero polynomial. Strassen [Str73] showed that over infinite fields, (÷)
gates do not add power to the model of circuits/formulas. That is, any circuit (or formula) with
(÷) gates, can be converted, with only a polynomial blowup, to another circuit (resp. formula)
without (÷) gates computing the same polynomial. This result was extended to finite fields as
well [HY11]. However, the situation is quite tricky in the non-commutative world! Indeed, one of
the main questions studied in [HW15] is:

Question: Can division be efficiently eliminated in non-commutative circuits and formulas?

To understand this, we need to know about Skew-fields and Invariant Theory, which we
will get to shortly. It is known since recently in the work of Derksen-Makam [DM15], that (÷)
gates can be eliminated in non-commutative formulas. It is still open if it can be eliminated in
non-commutative circuits.

Before we get into the theory of skew-fields, etc., we provide some context for the questions
we are going to discuss.

2.2.1 Word Problems

Word problem is a general type of problem , pervasive in many fields. In many settings, we have
an interesting class of objects where elements may not have a unique/canonical description. In
particular, there is an equivalence relation over the space of possible descriptions Ω. And the
basic word problem is to decide if two a priori distinct descriptions actually refer to the same
object.

WORD PROBLEM: Consider a universe Ω, endowed with an equivalence relation ∼=. Given
x, y ∈Ω, is it the case that x ∼= y?
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This abstract problem captures many well known problems. For example, word problem
for groups is an example of a word problem. This has been important since the early days
of computability theory. In particular, it is known that given a description of a group, and an
element of the group, it is undecidable to check whether the element is equal to identity.

Polynomial Identity Testing (PIT) also falls under this category of word problems, and so
does Non-commutative PIT and non-commutative singularity.

2.2.2 Completeness of Determinant [Val79]

Before we go into the theory of skew-fields, etc. we describe Valiant’s fundamental result of
completeness of the determinant for formulas.

Theorem 2.8 ([Val79]). If F (x) is an arithmetic formula with |F | = s, then there exists LF (x)
(symbolic matrix), such that, F = det(LF ). Moreover, LF is 2s ×2s.

In other words, computing a formula reduces to computing a determinant.

“Determinants pervade all branches of mathematics. Textbooks are filled with determinants. It is
certainly the most popular polynomial in the history of mankind. Why? This is why!”

Proof Sketch of Theorem 2.8. The proof is obviously by induction. A formula has an inherent
inductive structure. There are three cases:

• F is constant or a variable.

• F =G ×H .

• F =G +H .

The first two cases are easy, but addition is tricky. So we strengthen our inductive hypothesis to
say that LF has a special structure as follows,

∗ ∗ ∗ ∗
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗


That is, LF has 1’s below the diagonal and all 0’s below it.

• F is constant c or variable xi : Easy![
1 0
1 c

] [
1 0
1 xi

]
• F =G ×H , then we let,

LF =



∗ ∗ ∗ 0 0 0
1 ∗ ∗ 0 0 0
0 1 ∗ 0 0 0
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

 where, LG =
∗ ∗ ∗

1 ∗ ∗
0 1 ∗

 and LH =
∗ ∗ ∗

1 ∗ ∗
0 1 ∗
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• F =G +H ,

LF =



0 0 0 1 0 0 1
1 ∗ ∗ ∗ 0 0 0
0 1 ∗ ∗ 0 0 0
0 0 1 ∗ 0 0 0
1 0 0 0 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 1 ∗


where, LG =

∗ ∗ ∗
1 ∗ ∗
0 1 ∗

 and LH =
∗ ∗ ∗

1 ∗ ∗
0 1 ∗



If we expand by the first column, and we take the first 1, then we are forced to take all the
1’s below the diagonal in the LG matrix and also the first 1 in the first row, and this gives us
det(LH ) from the remaining rows/columns. Similarly, if we start with the second 1 in the
first column, then we get det(LG ).

But this is not in the inductive form we wanted. However, that’s easy to fix. We swap the
top most row and the first row of LH , to get,

LF =



1 0 0 0 ∗ ∗ ∗
1 ∗ ∗ ∗ 0 0 0
0 1 ∗ ∗ 0 0 0
0 0 1 ∗ 0 0 0
0 0 0 1 0 0 1
0 0 0 0 1 ∗ ∗
0 0 0 0 0 1 ∗


where, we can multiply the first row by −1 if needed to fix the overall sign.

While this proof seems like magic, there is a systematic way to come up with this proof.
Hint: Algebraic Branching Programs!

Thus, as a consequence of Theorem 2.8, the PIT question for commutative formula F simply
reduces to the problem of determining membership of the symbolic matrix LF in SING.

Exercise 2.9. Construct a poly(n) size commutative circuit (not formula) for computing the
determinant of an n ×n matrix of variables (but with only with (+) and (×).) [Hint: Berkowitz
algorithm, following “Samuelson’s law”]

2.2.3 Free-Skew fields

In the commutative case, we obtain F(x), the field of rational functions, by simply adding the
inverses to F[x], the polynomial ring. Note that every element in F(x) is of the form p ·q−1 where
p, q ∈ F[x].

The non-commutative case is quite tricky! Usually, for any algebraic object, there is a canon-
ical description (even leaving aside complexity issues). For example, elements of F[x] have a
canonical expression as vector of coefficients, or elements of F(x) can be canonically written as
p ·q−1 in the most reduced form.
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F〈x〉, the space of non-commutative polynomials, does have a canonical representation as
a vector of coefficients. However, when we try to extend it to the free skew field, there seems
to be no other way to describe these objects than through computation. That is, we start with
constants of F and the variables x and produce new elements by (+), (×) and (·)−1 operations.
The free skew field F<(x )> was thus defined3 this way by Amitsur [Ami66].

Definition 2.10. F<(x )>= {
formula with (+), (×), (·)−1 over constants in F and variables in x

}
We run into complications very quickly when dealing with F<(x)>. For instance, x−1 + y−1

cannot be expressed as p ·q−1 or p−1 ·q for any p, q ∈ F〈
x, y

〉
. Things get even more complicated.

For example, the formula (x + y z−1w)−1 has a nested inversion. In the commutative world, we
can eliminate nested inversions and have only one inversion at the top. However, the formula
(x + y z−1w)−1 has an inversion height 2.

Definition 2.11 (Inversion Height). Given an element P ∈ F<(x )>, we define the inversion height of
P as the smallest depth of inversions needed in any non-commutative formula that is “equivalent”
to P .

Remark 2.12. In the above definition, “equivalent” needs to be carefully defined. For now, we
say that two formulas P and Q are equivalent (i.e., P ≡Q) if we can obtain one from the other by
using field axioms, such as, multiplying by 1, writing 1 as x · x−1, etc.

Actually, the notion of “equivalence” is defined differently (see Definition 2.15), and it is a
theorem of Cohn and Reutenauer [CR99] that these two notions of “equivalence” are in fact
equivalent!

Exercise 2.13. Prove that (x + y z−1w)−1 has inversion height of 2.

More strongly, Reutenauer [Reu96] showed that for all n, there exists a formula Fn with
inversion-height (Fn) ≥ n.4 Determining inversion height of a rational function can in fact be
tricky.5 For instance, consider Hua’s identity, which says that (x +x y−1x)−1 ≡ x−1− (x + y)−1. The
expression on the left has two nested inversions, but it has inversion-height of 1, as is evidenced
by the formula representation on the right.

We will see that a consequence of the main result of [GGOW16] is a polynomial time algo-
rithm for rational identity testing (RIT) of non-commutative formulas. We don’t know this for
commutative formulas!

Theorem 2.14 (RIT for free skew field). Given formulas p, q ∈ F<(x )>, it is possible to determine, in
polynomial time, whether p(x) ≡ q(x) or not (i.e. polynomial in the size of formula size of p and
q).

3The definition given here is actually not accurate. A proper definition of the free skew field is given as follows:
the free skew field is the set of equivalence classes of non-commutative (valid) formulas with inversion gates, where
the equivalence relation is given by the one stated in Remark 2.12 or equivalently Definition 2.15.

4This result is morally same as and inspired by Kleene’s result that there exist regular languages with arbitrarily
large star-depth. Indeed, (+), (×) and (·)−1 operations in the formula world correspond to concatenation, union and
star operations in the regular expression world.

5The problem of computing the inversion height of a rational function is known to be decidable, and it is an open
problem to give efficient algorithms to compute the inversion height.
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We now turn to formally defining the equivalence between two non-commutative formulas.
Intuitively, the definition should be that the two formulas have the same evaluations on all
inputs coming from any ring. However, the following definition says that two formulas are
equivalent if they agree when we replace the inputs by matrices with arbitrarily large dimension.
This is because zero/non-zero behaviour on matrices of arbitrarily large dimension captures
zero/non-zero behaviour on all division rings [Ami66].

Definition 2.15 (Equivalence of non-commutative formulas [Ami66]). Given R ∈ F<(x)>, we
define R ≡ 0 if for all d ∈Z>0 and D = (D1, . . . ,Dm) ∈Md (F)m , it holds that R(D) = 0 (whenever
R(D) is defined). More generally, given P,Q ∈ F<(x )>, we say that P ≡Q iff (P −Q) ≡ 0.

More strongly, it was shown by Amitsur [Ami66] that we could replace the condition R(D) = 0
by a seemingly much weaker condition, and still have the same notion of equivalence. Namely,

Theorem 2.16 ([Ami66]). R(x) ≡ 0 iff for all d ∈Z>0 and for all D1,D2, . . . ,Dm ∈Md (F), it holds
that det(R(D)) = 0 (whenever R(D) is defined).

A natural question, given Valiant’s Theorem 2.8, is whether there is a canonical problem that
one can have, like the symbolic determinant identity testing in the commutative case, which
captures the word problem for the free skew field. And that is what Cohn [Coh71] did, which is
a generalization of Valiant’s theorem and even predates it! (It also works in the commutative
setting.)

Theorem 2.17 ([Coh71]). If F (x) ∈ F<(x)> is a non-commutative formula with |F | = s, then there
exists LF (x) (symbolic matrix over non-commutative variables), such that, F ≡ (L−1)1,1. Moreover,
LF is 3s ×3s. (Note (L−1)i j ∈ F<(x )>.)

Indeed, the proof is also by induction, although slightly harder as we have to deal with
inversion. But there are several proofs of this theorem by now. One of course is by Cohn [Coh71].
There are other proofs in [Mal78] and [HW15].

Exercise 2.18. Construct a poly(n) size non-commutative circuit for computing inverse of an
n ×n matrix of variables. [Hint: Solve the 2×2 matrix case and then recurse. Or see [HW15].]

From Theorem 2.16, we can obtain the following important corollary.

Corollary 2.19. L = (A1, . . . , Am) ∈ NC-SING iff for all d ∈Z>0 and for all D1,D2, . . . ,Dm ∈Md (F),
it holds that det(

∑
Ai ⊗Di ) = 0.

Exercise 2.20. Prove Corollary 2.19. [Hint: In one direction, use L ∈ NC-SING implies that there
is a factorization over the free skew field. In other direction, use L ∉ NC-SING implies that L has
an inverse over the free skew field (along with Theorem 2.16).]

Note that a corresponding statement holds true in the commutative case, as in the following
remark (again, we do need that F is large enough).

Remark 2.21. L = (A1, . . . , Am) ∈ SING iff d ∈ Z>0 and for all δ1,δ2, . . . ,δm ∈ F, it holds that
det(

∑
Ai ·δi ) = 0.
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An important question here is whether we can impose a bound on d in Corollary 2.19. In
particular, is there an explicit d∗(n), such that, we could replace the “for all d ∈Z>0 by d ≤ d∗(n)?
What kind of bounds can we prove on d∗(n)?

Interestingly, in [HW15] it is shown that (÷) gates can be eliminated from non-commutative
formulas with a quasi-polynomial blowup if d∗(n) = poly(n).

Note that the question of “L ∈ NC-SING?” doesn’t change when we pre-multiply or post-
multiply all the Ai ’s in L by non-singular matrices. This is a group action, and should immediately
remind us of invariant theory.

2.3 Invariant Theory

“Invariant theory studies symmetries of group actions. All modern physics relies on Invariant
theory, because all forces of nature are group actions.”

2.3.1 Historical detour

Invariant Theory is attributed to Cayley’s 1845 paper “On the Theory of Linear Transformations.”
We illustrate the ideas of Invariant theory from problems in Euclidean geometry.

Given two (not necessarily convex) polygons S and T in R2, when can we cut S into pieces
and rearrange it to get T ? It turns out that this can be done iff area(S) = area(T ). Clearly, this is a
necessary condition, but it also turns out to be sufficient!

Exercise 2.22. Prove that it is possible to “transform” a polygon S in R2 into another polygon T
in R2 iff area(S) = area(T ). Here, the operations allowed in “transform” are cutting the polygon
using straight cuts and rearrangement of the pieces.

The main question in Invariant Theory in genereal is to characterize all the invariants.
What about polytopes in R3? Of course, volume is an invariant. But are there any other

invariants? Indeed, this was the 3rd question in Hilbert’s list of 23 questions. This was the first of
Hilbert’s questions that was answered. It was answered by his student Max Dehn, who introduced
what is now known as Dehn’s invariant! This invariant is related to angles in the polytope, sizes
of edges, etc. In particular, it follows from this invariant that we cannot transform a cube in to a
regular tetrahedron of the same volume.

2.3.2 Invariants of Linear Group Actions

While the definitions make sense for any group G and over any field F, the theory is nicest when F
is algebraically closed of characteristic zero (e.g. F=C) and the group G is reductive and algebraic
(e.g. finite groups, SLn(C), GLn(C), etc.). We will implicitly assume this throughout this lecture.

Let G be a group that acts on Ω, denoted by G æΩ. The action is specified by a function
A : G ×Ω→Ω. That is, gω ∈Ω for all g ∈G and ω ∈Ω. Group action must satisfy all the natural
properties of the group. For example, it must be associative, that is, (g h)(ω) = g (h(ω)).
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We are going to consider linear group actions on linear spaces. If Ω = Fk , then all “linear”
group actions are simply matrices. A linear group G ⊆ GLk (F) acts by sending points in Fk to
points in Fk using invertible linear transformations. We can also extend this group action to act
on the polynomial ring F[z1, . . . , zk ]. That is, we apply the linear transformation on the symbolic
vector of variables (z1, . . . , zk ).

We are going to look for polynomial invariants of a group action. Note that, not all invariants
are polynomial; namely, if p is an invariant, then so is ep or log p. While for actions of finite
groups, all invariants are captured by polynomial invariants (i.e. orbits of two elements intersect
iff they have the same value on all polynomial invariants), this is not necessarily true for actions
of infinite groups because of the distinction between orbit-closures and orbits. More on this
later.

Definition 2.23. Let V = Fk . The invariant ring (or the ring of invariant polynomials) is defined
as

F[V ]G := {
p ∈ F[z] : g p = p ∀g ∈G

}
We now give some examples illustrating the definition above of invariant rings.

Example 1. V = Fk and G = Sk is the permutation group on [k]. In this case, F[V ]G is the set
of all symmetric polynomials, which are generated by the set of elementary symmetric
polynomials, where ESYMr

k (z) := ∑
S⊆[k]
|S|=r

∏
i∈S zi .

F[V ]G = {symm polys} = 〈
ESYMr

k

〉
,1 ≤ r ≤ k

Note that, here
〈

g1, . . . , gm
〉

is the ring generated by g1, . . . , gm . In other words, it is the set
of polynomials

{
P (g1, . . . , gm) : P ∈ F[y1, . . . , ym]

}
.

Example 2. V = Fk where k = n2 and we interpret the variables as forming an n ×n matrix
variable Z . The group G = SLn(F)2 acts on V = Mn(F) by pre and post multiplication. That
is for any g = (R,C ) ∈G , the action of g on Z ∈V is given by g Z = R ·Z ·C .

In this case, F[V ]G = 〈det(Z )〉. In other words, the determinant polynomial generates all
the invariants!

Example 3. V = Fk where k = mn2, and we interpret the variables as an m-tuple of n ×n matrix
variables Z = (Z1, . . . , Zm). The group G = SLn(F)2 acts on V by simultaneous pre and post
multiplication. That is, for any g = (R,C ) ∈G , the action of g on element (Z1, . . . , Zm) as,
g Z = (R ·Z1 ·C , . . . ,R ·Zm ·C ).

This was open for a long time until 2000, when several groups [DW00, DZ01, SdB01]
independently discovered the set of generators of the invariant ring. We summarize this
result in the theorem below.

Theorem 2.24. Let V = Fk where k = mn2, and we interpret the variables as an m-tuple of
n ×n matrix variables Z = (Z1, . . . , Zm). The group action of G = SLn(F)2 on V is given by g Z =
(R ·Z1 ·C , . . . ,R ·Zm ·C ) for g = (R,C ). Then,

V G = 〈
det

(∑
Zi ⊗Di

)
: ∀d , ∀D1, . . . ,Dm ∈ Md (F)

〉
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Unlike Examples 1 and 2, the invariant ring in Example 3 (which is relevant for our application)
is specified by an infinite set of polynomials. We can ask if the invariant ring is finitely generated.
In fact, Hilbert [Hil93] showed that V G is always finitely generated for actions of reductive groups
(we won’t define this but as mentioned before finite groups, GLn(C), SLn(C) are examples of
reductive groups). Indeed, this is the same paper which proves the Nullstellensatz, but this
application to Invariant Theory was really what Hilbert was after!

It was shown much later by Popov [Pop82], that in the nice setting (groups are reductive and
algebraic, field isC, etc.) in fact the invariant ring is generated by some polynomials with degree at
most exp(exp(n,k)) (recall that n is the dimension of the group G and k is the dimension of vector
space V ). This was improved by Derksen [Der01] who showed that the invariant ring is generated
by polynomials with degrees at most exp(poly(n,k)). In fact, for the specific action of pre- and
post- multiplying by SLn(F) matrices, as mentioned in Theorem 2.24, there is even a poly(n,k)
upper bound on the degree of generators. We will see this in Lecture 3 (see Theorem 3.14, proven
in [IQS15]). But for the purposes of proving Theorem 2.1, an exp(poly(n,k)) bound will suffice.
We summarize Derksen’s result in the following theorem.

Theorem 2.25 ([Hil93, Pop82, Der01]). Let V = Fk be a vector space. Let G ⊆ GLn(F) be a “nice"
(as explained above) group action on V . Then, F[V ]G is generated by a set of polynomials of degree
at most exp(poly(n,k)).

As a corollary, we get a bound on the d∗ for the specific action of simultaneous pre and post
multiplication. The main difference between the following corollary and Theorem 2.24 is that we
only need to consider d ≤ d∗.

Corollary 2.26. For any m, n, there exists d∗ = d∗(m,n) ≤ exp(poly(n,m))6 s.t. the following
holds:

Let V = Fk where k = mn2, and we interpret the variables as an m-tuple of n ×n matrix
variables Z = (Z1, . . . , Zm). The group action of G = SLn(F)2 on V is given by g Z = (R ·Z1 ·C , . . . ,R ·
Zm ·C ) for g = (R,C ). Then,

F[V ]G = 〈
det

(∑
Zi ⊗Di

)
: ∀d ≤ d∗, ∀D1, . . . ,Dm ∈ Md (F)

〉
Using this corollary, we will now move to proving Theorem 2.1, which implies polynomial

time convergence of Algorithm 2! As an aside, note that this bound is not useful for application
of division elimination in [HW15]. However, the much better bound of [DM15] actually shows
that inversion can be eliminated for non-commutative formulas.

2.4 Proof of Capacity Lower Bound

We put together the theorems developed so far to prove Theorem 2.1.

Proof Sketch of Theorem 2.1. Let Ln = L = (A1, . . . , Am) with Ai ∈ Mn(F), with C (L) = I . We wish
to show that if cap(L) > 0 then in fact cap(L) > n−O(nc ).

6as mentioned earlier, this bound has been improved to d∗ ≤ n +1 in Theorem 3.14 proven in [IQS15].
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For any Kd = K = (D1, . . . ,Dm) for Di ∈ Md (F), define L⊗̃K := (A1 ⊗D1, . . . , Am ⊗Dm), where
each Ai ⊗D j ∈ Mnd (F).

From Theorem 2.6, we know that if L is commutatively non-singular, then we do have the
desired theorem. In other words, if there exist δ1, . . . ,δm ∈ F such that det(

∑
i Aiδi ) 6= 0 then

cap(L) > n−O(nc ).
If L is non-commutatively non-singular, that is, L ∉ NC-SING, then from Corollary 2.26 and

from Corollary 2.19 we know that for d∗ ≤ exp(poly(n,m)) there exist D1, . . . ,Dm ∈Md∗(F) such
that, det(

∑
i Ai ⊗Di ) 6= 0. We can replace the entries of Di ’s by formal commutative variables, to

get that the polynomial det(
∑

i Ai ⊗Di ) is not identically zero. Note that the this polynomial has
degree at most n ·d∗ ≤ exp(poly(n,m)). Thus, by the Schwartz-Zippel lemma, we have that there
exists a choice of Di ’s with integer entries no larger than poly(n ·d∗).

From Theorem 2.6, we have that cap(L⊗̃K ) > (nd∗)−nd∗
. We wish to use this to lower bound

cap(L), towards which, we use the following lemma.

Lemma 2.27. cap(L⊗̃K ) ≤ cap(L)d∗ ·cap(K )n .
Alternately, if we define cap(L) = cap(L)1/n , then, cap(L⊗̃K ) ≤ cap(L) ·cap(K ).

Exercise 2.28. Prove Lemma 2.27. [Hint: Consider P Â 0 that is a tensor product of a n×n matrix
and a d∗×d∗ matrix. Moreover, consider the d ×d matrix to be identity.]

Using the above lemma, we have that,

(nd∗)−nd∗ ≤ cap(L⊗K ) ≤ cap(L)d∗ ·cap(K )n . (2.1)

But observe that
cap(K ) ≤ (nd∗)O(n) . (2.2)

This is because cap(K ) ≤ det(K (I ))
det(I ) ≤ poly(nd∗)n .

Thus, combining Equation 2.1 and Equation 2.2, we get

cap(L) ≥ (nd∗)−O(n) ≥ exp(−poly(n,m)) .

since d∗ ≤ exp(poly(n,m)).

To summarize the proof sketch,

• We used ideas from non-commutative algebra to get Corollary 2.19, which was a criterion
for non-commutative singularity.

• We used Invariant Theory to obtain upper bound on d∗(n), i.e. Corollary 2.26.

• Finally, we combined this with Gurvits’ solution to the commutatively non-singular case,
i.e. Theorem 2.6.

With hindsight, in the way we have presented the proof in these lectures, it seems that we did
not really have to go into non-commutative algebra at all, since formally Corollary 2.19 is also a
consequence of Corollary 2.26. There are several explanations why this “detour” was needed. The
obvious one is that this is how the proof was found. A better one is that Cohn’s characterizations
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of non-commutative rank are still used in the proof, as well as Amitsur’s rigidity theorem which
is used in the bound on d∗(n). A third reason is that the algorithm has an important corollary to
non-commutative algebra, namely a polynomial time algorithm for the word problem over free
skew fields.

2.5 Exercises

Definition 2.29 (Hall Blocker). Let R be a ring (not necessarily commutative), Mn(R) be the
space of n ×n matrices with entries in R and r ∈N be such that 0 ≤ r < n. We say that a matrix
A ∈ Mn(R) has an r -Hall blocker (or simply a Hall blocker) if A has a zero submatrix of dimensions
i × j s.t. i + j ≥ 2n − r .

The weak algorithm (e.g. Chapter 2 in [Coh06]) is a generalization of the division algorithm
for univariate polynomials to multivariate non-commutative polynomials. No such analogue
exists for multivariate commutative polynomials.

Problem 2.30 (Weak algorithm). Let p, q1, . . . , qn ∈ F〈x〉 be polynomials in the non-commutative
variables x = (x1, . . . , xm). p is said to be right degree-dependent on q1, . . . , qn if p = 0 or there
exist polynomials r1, . . . ,rn s.t.

deg

(
p −

n∑
i=1

qi ri

)
< deg(p)

and
deg(qi )+deg(ri ) ≤ deg(p)

for all i . Polynomials q1, . . . , qn are said to be right degree-dependent if there exist polynomials
r1, . . . ,rn s.t.

deg

(
n∑

i=1
qi ri

)
< max

i

{
deg(qi )+deg(ri )

}
Prove that if q1, . . . , qn are right degree-dependent, then there exists one of them which is right
degree-dependent on rest of them.

Problem 2.31 (Commutative vs. Non-commutative rank - lower bound). The 3×3 (generic)
skew-symmetric matrix gives a gap of 3/2. Construct an example with gap > 3/2.

Recently, [DM16], following [LO15], constructed examples with gap approaching arbitrarily close
to 2.

Problem 2.32 (Hua’s identity). Prove that for non-commuting variables x, y ,(
x +x y−1x

)−1 + (x + y)−1 = x−1

Problem 2.33 (Higman’s trick). Given a matrix M ∈ Mn(F[x]) (or ∈ Mn(F〈x〉)), find a map that
linearizes the matrix M , i.e. the entries of the new matrix should be affine forms, and preserves
its co-crank (or co-ncrank). If the entries of M have small formula size, then the map shouldn’t
blow up the dimension of M by a lot.
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Problem 2.34. One of Cohn’s theorems [Coh95] says that for a linear matrix (whose entries are
affine forms) L ∈ Mn(F〈x〉), ncrank(L) ≤ r iff there exist n×r and r ×n linear matrices s.t. L = L1L2.
Use this theorem to give an exponential time algorithm for computing ncrank(L).

Problem 2.35 (Proof of Cohn’s theorem). In this exercise, we will prove Cohn’s theorem7 that
ncrank(L) ≤ r iff there exist invertible matrices B ,C ∈ Mn(F) s.t. BLC contains an r -Hall blocker.
Our starting point will the non-trivial theorem8 that ncrank(L) ≤ r iff there exist matrices K1 ∈
Mn×r (F〈x〉) and K2 ∈ Mr×n(F〈x〉) (not necessarily linear) s.t. L = K1K2.

1. Suppose p1, . . . , pn and q1, . . . , qn are non-commutative polynomials such that

n∑
i=1

pi qi = f (2.3)

Then there exists a matrix E ∈ GLn(F〈x〉) (the entries of E−1 will also have polynomial
entries) which “kills all cancellations" in equation (2.3). Formally, if[

p ′
1 p ′

2 . . . p ′
n

]= [
p1 p2 . . . pn

]
E

and 
q ′

1
q ′

2
...

q ′
n

= E−1


q1

q2
...

qn


then

n∑
i=1

p ′
i q ′

i = f

and for each i , either one of p ′
i or q ′

i is 0, or deg(p ′
i )+deg(q ′

i ) ≤ deg( f ). (Hint: use the weak
algorithm).

2. If there exist K1,K2 as above s.t. L = K1K2, then prove that there exist linear L1,L2 with the
same dimensions s.t. L = L1L2. Furthermore, for every 1 ≤ i ≤ r , either the i th column
of L1 has only elements from F or the i th row of L2 does. Note that this does not mean
that L1 ∈ Mn×r (F) (think of a counterexample). (Hint: Reduce to the above lemma by
introducing auxilliary non-commuting variables)

3. Use the above to construct a Hall blocker for L.

The following connection between non-commutative rank and tensor rank is due to [DM16].

Problem 2.36 (Non-commutative rank and tensor rank). Let the linear matrix L =∑n
i=1 xi Ai ∈

Mn(F〈x〉) be s.t. crank(L) =αn and ncrank(L) = n. Suppose B1, . . . ,Bn be matrices in Mn(F) s.t.∑n
i=1 Ai ⊗Bi is full rank (they exist due to the recent bounds of [DM15, IQS15]). Let B be the

n ×n ×n tensor whose slices are B1, . . . ,Bn . Then prove that the tensor rank of B is at least n/α.

7Technically Cohn only proved it for r = n −1 and the full theorem appeared in [FR04]
8Again due to Cohn
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The same bound also applies for border rank. With the examples in [DM16], this gives the
best known lower bounds for border rank. These examples were discovered by Landsberg-
Ottaviani [LO15] to prove lower bounds on border rank of the matrix multiplication tensor (they
don’t talk about non-commutative rank though and this connection was discovered by [DM16]).

Given an n ×n unitary matrix U , let u1, . . . ,un denote its column vectors. Given a completely
positive operator L, consider the non-negative matrix AU ,V whose (i , j )th entry is given by

tr
[

L(ui u†
i )v j v†

j

]
. So this describes a reduction from operators to non-negative matrices after

fixing a basis.

Problem 2.37. Use the above described reduction to prove that cap(L) > 0 iff L is rank non-
decreasing.

This is quite common in geometric invariant theory, fixing basis and compactness arguments
reduce the non-commutative group actions to the setting of commutative group actions. How-
ever this reduction is highly non-algorithmic and finding the “right basis" is one of the main
challenges in the algorithmic setting.

Problem 2.38. Prove that the problem of computing the rank of a linear matroid (or of the
intersection of two linear matroids) can be reduced to the problem of determining whether a
completely positive operator is rank non-decreasing.
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Chapter 3

Invariant Theory (continued) and
Brascamp Lieb Inequalities

Scribed by: Chin Ho Lee (chlee@ccs.neu.edu) & Aditya Potukuchi (ap1311@cs.rutgers.edu)

Abstract

Today, I will discuss invariant theory in more depth than in the previous lecture: I will describe
some of the main objects studied in the theory of invariants (nullcone, orbits and orbit closures)
and show how these objects relate to some areas of complexity theory (such as GCT (Geometric
Complexity Theory) and the graph isomorphism problem). Then, I will give another way to
upper bound the degree of the polynomials that generate the invariant ring of the action of
GLk (F)2 on symbolic matrices with non commuting variables, the action that we saw in the last
lecture.

After discussing invariant theory, I will shift gears and discuss a recent application of Operator
Scaling to analysis. I will introduce, with many examples, the Brascamp–Lieb inequalities, a
broad family which includes numerous famous inequalities throughout analysis, probability,
information theory and geometry. I will discuss their rich structural theory and their basic
computational problems. I will then describe an efficient algorithm for proving them. While the
algorithm is derived from the operator scaling one, I will give a self-contained description natu-
rally suggested from their structure theory. It should become clear why this algorithm efficiently
solves large family of linear programs of exponential size, and I will give some examples.

3.1 Reintroduction to Invariant Theory

Recall from previous lecture that we will implicitly assume that F is an algebraically closed field
of characteristic zero (think of F=C) and G to be an algebraic and reductive group (think of finite
groups, GLn(C), SLn(C)).

We were talking about the action of a group G = GLn(F) on the vector space V = Fk for some
field F. This action naturally induces a group action of G on the ring of polynomials F[z1, . . . , zk ].
Under such an action, one important object to study is the ring of the polynomials that are
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invariant under this action, more specifically

F[V ]G := {
P ∈ F[z1, . . . , zk ] : g P = P ∀g ∈G

}
Hilbert, in [Hil93] showed that F[V ]G is finitely generated. Derksen, in [Der01] showed that F[V ]G

is generated by polynomials of degree at most exp(poly(n,k)). In fact, these are answers to the
two fundamental problems when studying any group action in Invariant Theory.

Today, we will go back to our usual action of the group G = SLn(F)2 on an operator (A1 . . . , Am),
where every Ai ∈ Mn(F). We will be able to prove much better bounds on the degree of the
polynomials that generate F[V ]G .

3.2 Some problems regarding orbits

3.2.1 Orbit Containment Problem

For a group G acting on a vector space V , and for a element u ∈V , the orbit of v is defined as the
set of all points that G maps it to. Formally,

Definition 3.1 (Orbit). For a group G acting on a vector space V , and an element v ∈V , the orbit
of v , denoted by Gv is given by:

Gv := {
g v : g ∈G

}
.

Let us look at the following simple to state problem which proves extremely general:

ORBIT CONTAINMENT: Given a group G which acts on a vector space V , and two elements
u, v ∈V answer

“Does v ∈Gu?”

Indeed, this is quite a general problem, for a simple example, take V to be the space of all
n×n matrices (think of symmetric 0−1 matrices as adjacency matrices of graphs), and take G to
be Sn that acts on V by permuting the rows and columns of a matrix (induced by the permutation
of vertices of the underlying graph). Then orbit containment for this action captures the graph
isomorphism problem.

3.2.2 Orbit Closure Containment

Since we are working over C, and have a topology it is much more natural to ask whether a point
is contained not in the orbit, but in the closure of the orbit of another element. This is particularly
natural in the context of Geometric Invariant Theory.

Definition 3.2 (Orbit Closure). For a group G acting on a vector space V , and an element v ∈V ,
the orbit closure of v , denoted by Gv is the subset of V which contains the limit points of all
convergent sequences whose elements are taken in Gv .
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In the above definition, convergence is in `2 norm. We have the problem definition:

ORBIT CLOSURE CONTAINMENT: Given a group G which acts on a vector space V , and two
elements u, v ∈V answer

“Does v ∈Gu?”

This is a slightly relaxed problem as it is sufficient to find a sequence g1, g2, . . . ∈G such that
(gi u)i gets closer to v in the `2 norm, as i grows. Viewed through this lens, the approximate
operator scaling also seems like a very natural problem. Successively applying the appropriate
LR action makes our operator converge to a doubly stochastic one.

3.2.3 Orbit Closure Intersection

Here, we generalize all the above problems even further in a natural way. We now want to know
whether the closed orbits of two elements of our space intersect.

ORBIT CLOSURE INTERSECTION: Given a reductive algebraic group G which acts on a vector
space V , and two elements u, v ∈V answer

“Is Gu ∩Gu 6= ;?”

This problem has a really convenient characterization due to Mumford [Mum65]:

Theorem 3.3 (Mumford). For G, u, v as given above, we have that Gu ∩Gv 6= ; if and only if
P (u) = P (v) for every P ∈ F[V ]G .

Clearly, one direction is trivial, if Gu ∩Gv 6= ;, then one has that the polynomials in F[V ]G

agree on u and v . The other direction is non trivial.
One interesting group action of GLn(F) on a tuple of n ×n matrices that has been studied in

the literature of Algebraic Complexity Theory is the Simultaneous Conjugation.

Definition 3.4 (Simultaneous Conjugation). We say that the group GLn(F) acts on a symbolic
matrix L = (A1, . . . , Am) by Simultaneous Conjugation if for every B ∈ GLn(F), we have:

B(L) = (B A1B−1, . . . ,B AmB−1)

A deterministic polynomial time algorithm for the orbit-closure intersection problem for
this action follows from the work of Raz-Shpilka [RS05] as observed in Forbes-Shpilka [FS13]
(who solve a more general problem called Noether Normalization Lemma for this action in
deterministic quasipolynomial time).
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Geometric Complexity Theory

Speaking in this language of orbits can help us capture some extremely important and difficult
problems. This is one of key points of view in Geometric Complexity Theory, started by Mulmuley
and Sohoni [MS01] . This program to prove arithmetic lower bounds (and then perhaps Boolean
ones) is to use the symmetries of the functions whose complexity is studied. In particular,
the determinant and permanent polynomials are actually characterized by their symmetries
under natural group actions, and together with their completeness properties allows to cast
the lower bound problem in terms of of orbits and orbit-closures under these actions. We
would like to know whether a “permanent-like” polynomial is contained in the orbit closure of
“determinant-like” polynomial under the action of the group G = GLm(F).

More specifically, let us use permn and detn to denote the permanent and determinant
polynomials of an n×n matrix of variables. We would like to know if the polynomial X m−n

1 permn

is contained in G detm , where m is comparable to n. Here, the action of G on the space of
symbolic matrices is just the usual linear transformations. Formally,

MAIN PROBLEM OF GCT: For m2 variables X1, . . . , Xm2 , and an integer n such that m =O(nc )
for some constant c,

“Does G detm 3 X m−n
1 permn?”

This question lies at the heart of Geometric Complexity theory program. If the answer to
the above question is NO (as is conjectured), then it implies that “VP 6= VNP”. Unsurprisingly,
geometric invariant theoretic tools play an important role in the program.

Null Cone problem

This is a special case of the above problem when we are just looking for the 0 point in the orbit
closure of another point

NULL CONE PROBLEM: Given a group G which acts on a vector space V , and an element
u ∈V answer

“Is 0 ∈Gu?”

Indeed, NCRANK is a special case of this problem where the vector space is the space of
n ×n symbolic matrices L = (A1, . . . , Am), the group is SLn(F)2, and the action of an element
(R,C ) ∈ SLn(F)2 is given by the usual LR action

(R,C )(L) = (R A1C , . . . ,R AmC )

Indeed, for every homogeneous polynomial P in the invariant ring F[V ]G , P (0) = 0, and we would
like to know if the same is true for L, i.e, whether for every d , and matrices D1, . . . ,Dm ∈Md (F)
we have

det

( ∑
i∈[m]

Ai ⊗Di

)
= 0.
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Recall that these are exactly the generators of the invariant ring under this action. Hence the
main result of [GGOW16], by Theorem 3.3, proves that for this particular group action, NULL-
CONE-PROBLEM has a polynomial time algorithm.

Remark 3.5. The NULL CONE PROBLEM is very interesting for other group actions as well! Since
the group action partitions the vector space into orbits, we would like to have a geometric
understanding of these orbits, and in particular, answer questions about containment, etc.

3.3 Upper bounding the degree of our invariant ring genera-
tors

In this section, Fwill be a large enough field (not necessarily algebraically closed or characteristic
zero).

3.3.1 The noncommutative rank of symbolic matrices

Let us review the notion of commutative rank of a symbolic matrix, in order to contrast, and
relate it with the noncommutative rank. For a symbolic matrix L =∑

i∈[m] Ai xi , the commutative
rank (denoted crank(L)) is defined as:

crank(L) := min{ r : ∃M ∈Mn×r (F(x)), N ∈Mr×n(F(x)), L = M N }

The entries of M and N come from F(x), the field of rational functions over F.
Now we describe a few equivalent ways to define the noncommutative rank of a symbolic

matrix

Factoring the matrix over the free skew field

This is similar to the above definition of commutative rank. Here, instead of the matrices M and
N being over the field of rational functions F(x), they are over the free skew field F<(x )>.

ncrank(L) = min{ r : ∃M ∈Mn×r (F<(x )>), N ∈Mr×n(F<(x )>), L = M N }

A really interesting and useful result due to Cohn [Coh95] states that the entries of the factors
may be assumed to be affine forms over F〈x〉.

This is interesting and useful because now, at least this shows that the problem of finding the
noncommutative rank is decidable. In fact, this gives an exponential time algorithm to find the
rank. This is done by setting up a system of quardratic equations in 2n(m +1)r variables, where
the indeterminates are the coefficients of the affine forms. Then we can solve this using, say, any
Gröbner basis solver to obtain the factorization.

Although [GGOW16] tests only the singularity of noncommutative symbolic matrices in
polynomial time, a recent result by [IQS15] finds the factors efficiently as well. Moreover, it works
over every field (in particular, deciding nonsingularity works over every field).
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Finding a large zero submatrix

Another result by Cohn [Coh95] (and in full generality, by [FR04]) that will be useful, is the
following:

Theorem 3.6. The noncommutative rank of a symbolic matrix L is the minimum r such that
there are matrices R,C ∈ GLn(F) such that RLC satisfies the following:

1. There are i , and j such that the submatrix given by the rows indexed by [n]\[i ], and columns
indexed by [n] \ [ j ] is the zero matrix

2. i + j = r

Pictorially, RLC looks as follows:

RLC =
[ i

M1,1 M1,2

M2,1 0

]
j

Here M1,1 is an i × j submatrix with i + j = r .

Remark 3.7. This is to be understood as a linear algebraic analogue of Hall’s Theorem. In fact,
this (n − i )× (n − j ) zero submatrix is called the Hall blocker. This is further expounded upon,
in Section 3.3.1. The main theorem there is to be thought of as the analogue of ‘neighbourhood
shrinkage’ that Hall’s Theorem states, as a condition for no perfect matching. See Problem 1.9 in
the tutorial homework.

Aside: Commutative rank of symbolic matrices

The statement of Theorem 3.6, in form, looks similar to a theorem that says something similar
about commutative rank, due to Flanders [Fla62]

Theorem 3.8. Suppose the commutative rank of a symbolic matrix L over a large enough field F is
at most r . Then there are matrices R,C ∈ GLn(F) such that RLC satisfies the following:

1. There are i , and j such that the submatrix given by the rows indexed by [n]\[i ], and columns
indexed by [n] \ [ j ] is the zero matrix

2. i = j = r

Pictorially, RLC looks as follows:

RLC =
[ r

M1,1 M1,2

M2,1 0

]
r

Proof. Let us look at L as a space of matrices. If rank(L) = r , there must be some matrix of rank r .
By linear transformations, assume it is the block matrix with Ir in the top left, and zero elsewhere.
Call this matrix A.

A =
[

Ir 0
0 0

]
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For any other matrix B , consider At +B for a variable t

At +B =
[

B1,1 + t Ir B1,2

B2,1 B2,2

]
Let us denote the columns of B1,2 as ur+1, . . . ,un , and the rows of B2,1 as vr+1, . . . , vn . For any
r +1×r +1 submatrix, the determinant is zero so we have, so in particular, for the [r ]∪{i }×[r ]∪{ j }
submatrix, we have the determinant:

det(B1,1 + t Ir )bi , j −
〈

vi ,u j
〉= 0

If |F| is large enough, then this can only happen when bi , j = 0 (and
〈

vi ,u j
〉 = 0). This implies

that B2,2 = 0.

This gives us that for every symbolic matrix L, we have

crank(L) ≤ ncrank(L) ≤ 2crank(L)

So in particular, computing the noncommutative rank gives a deterministic factor 2 approxima-
tion for the commutative rank of a space of matrices over a large enough field. Later, Blaser, et al.
in [BJP16] gave a deterministic FPTAS for the same problem.

Shrunk subspaces

Another way to say if the matrix is nonsingular is if it does not decrease the dimension of any
subspace. Formally,

Theorem 3.9. A symbolic n ×n matrix L =∑
i∈[m] Ai xi in noncommuting variables is singular if

and only if there exist subspaces W,U ≤ Fn with dim(W ) < dim(U ) and

AiU ⊆W (3.1)

For every i ∈ [m].

In fact, this theorem is implied by the above characterization due to Cohn, and further shows
the connection to Hall’s Theorem (see Remark 3.7).

Proof of implication. We may assume that the operator L, and therefore, all the Ai ’s are already
of the form. Since we have that i + j < n, we have that i < n − j .

Now that we this, it is clear to see that every Ai takes every vector that is supported on the
last n − j coordinates to vectors whose support is contained in the first i coordinates. Setting U
to be the subspace of vectors supported on the last n − j coordinates, and V to be the subspace
of vectors supported on the first i coordinates, we have our required claim.
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Rank Decreasing

In the rank decreasing notion of Gurvits [Gur04], we have (here the underlying field F=C):

Theorem 3.10 (Gurvits, [Gur04]). A symbolic matrix L =∑
i∈[m] Ai xi in noncommuting variables

(recall this can also be thought of as an operator L(P ) =∑m
i=1 Ai PA†

i ) is singular if and only if there
exists a matrix P º 0 such that

rank(L(P )) < rank(P ) (3.2)

This can be proved by showing that rank decreasing property is equivalent to the subspace
shrinkage property.

Exercise 3.11. For a tuple of matrices L = (A1, . . . , Am), condition 3.1 holds if and only if condition
3.2 holds.

3.3.2 Blow-up and degree upper bounds

Recall that d∗(n) was used to denote the upper bound on the degree of the generators of the
invariant ring VG where G = SLn(F)2 acts on a space V of symbolic matrices by the LR action.
For a nonsingular n ×n symbolic matrix L =∑

i∈[m] Ai xi , we have a related quantity (note that
σL(n) ≤ d∗(n)):

σL(n) = min

{
d : ∃D1, . . . ,Dm ∈Md (F), det

( ∑
i∈[m]

Ai ⊗Di

)
6= 0

}

By a very general result of Derksen [Der01],1 it is enough to bound σL(n), as in that paper
Derksen proved that d∗(n) ≤ n3 ·σL(n)2.

We have used an upper bound on this in the proof of [GGOW16], but now we will see a
different and simple proof of much stronger bound for this group action due to [IQS15].

The proof goes by introducing several intermediate quantities rankd (L) between rank(L) and
ncrank(L); defined as

rankd (L) := max

{
rank

( ∑
i∈[m]

Ai ⊗Di

)
: D1, . . . ,Dm ∈Md (F)

}
Clearly, we have rankd (L) ≤ ncrank(L) for every d , by definition. Moreover we also have rank(L) =
rank1(L). We will need some lemmas relating quantities rankd (L) and rankd−1(L). The first is a
simple one that allows us to ‘go from’ rank(L) to ncrank(L), via a sequence of rankd (L)’s.

Lemma 3.12. We have that rankd (L) ≤ rankd−1(L)+2n.

Proof. Indeed, for any d ×d matrix K , whose rows and columns indexed by [d ], let K (d−1) :=
K ([d −1], [d −1]) be a submatrix of K whose rows and columns are indexed by [d −1].

We have that
∑

i∈[m] Ai ⊗D (d−1)
i is a submatrix of

∑
i∈[m] Ai ⊗Di with n fewer rows and n fewer

columns, and hence has rank at least rank
(∑

i∈[m] Ai ⊗Di
)−2n.

1Derksen’s result holds for any general reductive group action. We will not state his result here in full generality as
we only need what is stated above, which is pertinent to the group action which we are studying.
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Another very important lemma from For every d ,L, we will need the following result from [IQS15],
which was inspired by the ideas in [Ami66]. This, combined with Lemma 3.12, will give us much
more control when ‘going from’ rank(·) to ncrank(·).

Lemma 3.13. For every integer d, and symbolic matrix L, we have

d
∣∣rankd (L)

Theorem 3.14. For an n ×n nonsingular symbolic matrix L =∑
i∈[m] Ai xi , we have

σL(n) ≤ n +1

Proof. By the definition of σ=σL(n), we have that rankσ−1(L) < (σ−1)n. But Lemma 3.13 tells
us that this means

rankσ−1(L) ≤ (σ−1)(n −1).

On the other hand, we have from Lemma 3.12 that

rankσ−1(L) ≥ rankσ(L)−2n = nσ−2n.

Combining, we have σ≤ n +1.

3.4 Brascamp–Lieb inequalities

We will now move on to a completely different topic, in the field of Analysis.
While PIT is the problem of proving algebraic identities, the analytic analog is proving

inequalities. I will now introduce the Brascamp–Lieb inequalities, discuss their rich structural
theory and their basic computational problems. I will then describe a scaling algorithm for
proving them and give an application of the Brascamp–Lieb inequalities to optimization. From
their structure theory, it will become clear that our scaling algorithm efficiently solves large
family of linear programs of exponential size, and I will give some examples. This part of the
lecture is based mainly on [GGOW17].

3.4.1 Introduction

Brascamp–Lieb inequalities (and their reverse version) are a vast generalization of lots of inequal-
ities that are important in various themes in Mathematics. For example, Hölder’s inequality, the
Brunn–Minkowski inequality, Nelson’s Hypercontractivity, the Prékopa–Leindler inequality, the
Loomis–Whitney inequality, and many more.

We will start by seeing a series of examples of some of them, starting with simple ones and
getting more complex, to illustrate their general structure. In particular, we will point out some
features of these inequalities, and then we will see how to generalize them, and what are the
main questions that arise when we study them.

Throughout this lecture, we will look at general functions f : Rd → R≥0 that are integrable.
We will also need a notion of norm. We will work with the standard norms, but will depart slightly

37



from the conventions by considering p ∈ (0,1) and writing p in the denominator (the reason for
this will become clear). So our “p-norm” of f is

‖ f ‖1/p =
(∫

x
f (x)1/p

)p
.

Let us start with something that we all know – the Cauchy–Schwarz inequality. If we have two
functions f1, f2 : R→R≥0, then ∫

x∈R
f1(x) f2(x) ≤ ‖ f1‖2‖ f2‖2.

In this case our norms p1 and p2 on the R.H.S. are p1 = p2 = 1/2 .
Once we have seen an inequality like this, an immediate natural question is whether we can

generalize it. One way to do so is to ask if the norms that appear on the right hand side can be
different, as we would always try to estimate the integral of the product of some functions.

Of course we can, because of Hölder’s inequality, which says that we can actually use p1 and
p2 norms, as long as p1 +p2 = 1 . That is,∫

x∈R
f1(x) f2(x) ≤ ‖ f1‖1/p1‖ f2‖1/p2 .

An even simpler example

Now let us move to an even simpler example. But in this example we are going to blow up the
dimension. In the previous example, they are functions from R to R≥0. Now we have to look
at functions on R2. We will denote x ∈ R2 by x = (x1, x2), and will write two functions f1, f2 as
before.

Suppose we are given some, convex or nice, shape S in R2, and we want to estimate the area
of this shape. One simple thing we can do is to project it to both directions (See Figure 3.1). So
the projections will be of some lengths `1 and `2, and we know that

Area(S) ≤ `1 ·`2.

This is a consequence of a trivial inequality. In fact in our example it will even be an identity. If
we look at the integral ∫

x∈R2
f1(x1) f2(x2),

because x can be separated into (x1, x2), this exactly equals to ‖ f1‖1‖ f2‖1. This should be com-
pared with the entropy inequality (this holds for discrete as well as continuous entropy but the
continuous one is more relevant here):

H(X1, X2) ≤ H(X1)+H(X2).

If we wanted to write it as an inequality by replacing the two norms, we couldn’t. The only
thing we can get even with an inequality is when p1 = p2 = 1 .
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x1

x2

Figure 3.1: Projecting a shape S ⊆R2 onto the lines x1 and x2.

The Loomis–Whitney inequality

But we can still do a generalization of this, which is the Loomis–Whitney inequality. In fact it is a
special case of the Loomis–Whitney inequality, that was discovered many times and in many
contexts.

A good way to think about it is to generalize the above to three dimensions. How do we think
of it as a generalization to three dimensions? We have some block lying in R3, and again we
want to estimate its volume. How do we estimate the volume? We can again project it to the
xi ’s like before, but it is not so interesting. Suppose we project it now, to planes, (x1, x2), and we
get some area here. We can do the same for (x2, x3) and (x1, x3), and we get some other areas
(See Figure 3.2). Suppose we know this block is some set S ⊆ R3, and its projections’ areas are
A1, A2, A3. What do we know? Suppose we want to bound the volume of S in terms of a function
of the areas. We can have

Vol(S) ≤
√

Area(A1)Area(A2)Area(A3).

Many people have seen this inequality in many contexts. It is easy to prove. People may have
seen, for example, for any graph G ,

# of triangles in G ≤ (# of edges in G)3/2.

As an entropy inequality, it is equivalent to:

H(X1, X2, X3) ≤ 1

2

(
H(X1, X2)+H(X2, X3)+H(X1, X3)

)
.

They are all the same and they come from inequalities of the above kind, that talk about projec-
tions. Now we are in R3, we are going to have three functions, f1, f2, f3 : R2 →R+. And we have
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x1

x2

x3

Figure 3.2: Projecting a body S ⊆R3 onto planes.

the following inequality for their integral,∫
x=(x1,x2,x3)∈R3

f1(π{2,3}(x)) f2(π{1,3}(x)) f3(π{1,2}(x)) ≤ ‖ f1‖2‖ f2‖2‖ f3‖2.

We see here that p1 = p2 = p3 = 1/2 . Again we cannot replace p1, p2, p3 with other numbers.

Remark 3.15. An extension of the Loomis–Whitney inequality, that is called the Shearer inequality,
also has a similar form.

The sharp Young inequality

Let us do one more example. Let us go back to two dimensions. Recall that we are looking at
some estimation problem. We are given some projections and we want to understand the area.
Again we have some shape S in R2. Like before we want to estimate its area. So we are given
some projections onto x1 and x2. Suppose you are given more information, maybe a projection
on a third direction, x1 −x2, that has length `3 (See Figure 3.3). Is there a better estimate of the
area using these 3 projections? It turns out that

Area(S) ≤
p

3

2
(`1`2`3)2/3.

Remark 3.16. For this inequality to hold, the angle of the third projection is important.

For the first time we see there is a constant
p

3
2 , in the other inequalities, the constant is 1. In

fact
p

3/2 is the optimal constant for this inequality to hold.
More generally, suppose you have three functions f1, f2, f3 : R2 → R≥. The sharp Young

inequality says that∫
x=(x1,x2)

f1(πx1 (x)) f2(πx2 (x)) f3(πx1−x2 (x)) ≤
p

3

2
‖ f1‖3/2‖ f2‖3/2‖ f3‖3/2.
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Figure 3.3: Projecting a shape S ⊆R2 onto the lines x1, x2 and x1 −x2.

Again we ask the same question. Are these the only norms we can put? It turns out that you
can replace the norms, but to replace the norms you also have to replace the constant. In general,
we can replace the 2/3 by p1, p2, p3, where p1 +p2 +p3 = 2 and 0 ≤ pi ≤ 1 , and the constantp

3/2 will become (∏
i (1−pi )(1−pi )∏

i pi
pi

)1/2

.

3.4.2 General setting of Brascamp–Lieb inequalities

Now let us state the general setting where all these inequalities fit in [BL76, Lie90].
First we are going have some input data. We have some dimension Rn , and we have some

linear maps B j : Rn → Rn j from Rn to lower dimensions. They can be represented by n j ×n
matrices. We also have some p j ≥ 0. So we have input B = (B1, . . . ,Bm) and p = (p1, . . . , pm),
which will be our input data.

The nature of our inequality looks like the following. For any f j : Rn →R≥0 that are integrable,∫
x∈Rn

m∏
i=1

f j (B j (x)) ≤C
m∏

j=1
‖ f j‖1/p j , (3.3)

where C ∈ (0,∞].
This should capture all the inequalities that have been written. Of course, we expect some of

them to hold (C <∞) and some of them to not. So given this form of potential inequalities, we
can ask which of them are true and which are not. The basic questions here are:

1. Is C <∞?

2. If C is finite, what is the optimal C ? Here optimal is smallness. This optimal C is called the
Brascamp–Lieb constant, denoted by BL(B , p).

41



3. Continuity of BL(B , p)? What happens to the constant if we perturb B a little bit? This
question is crucial for the non-linear versions of the BL inequality, which are important
because they are related to number theory, analysis, etc.

Basically the upshot of this lecture is that whatever structure is known, we can actually do
efficiently in polynomial time. Finding the answer to 1 and 2 is in P [GGOW17]; namely, we can
in polynomial time test whether this constant is finite, and compute (to arbitrary precision) the
optimal constant. And because we are doing it using a similar method to our operator scaling
algorithm, it is continuous. We actually give explicit bounds that were not known because all
previous arguments used compactness. We will not talk about 3 in this lecture.

Structure of Brascamp–Lieb inequality

Let us first see what was known structurally. There are two sets of results. One is in [Lie90], where
Lieb actually characterizes the optimal constant. And it is the following characterization which
should look familiar to you. He proved that

Theorem 3.17 ([Lie90]).

BL(B , p)2 = sup
A jÂ0

∏m
j=1 det(A j )p j

det(
∑m

j=1 p j B T
j A j B j )

.

What does the R.H.S. look like? It looks like capacity (Definition 1.14)! There are various
but not too complicated differences. For example, it is a supremum but we can invert it. It is
a non-convex optimization in terms of the Ai ’s. So you can think of given B and p, compute
BL(B , p). And [GGOW17] show that computing this (approximately) is in P . It turns out that

BL(B , p)2 = 1/cap(LB ,p ) =
(

inf
PÂ0

det(LB ,p (P ))

det(P )

)−1

for some operator LB ,p that is going to depend on B and p. We are not going to define it here.
That’s one way to do it and in fact we give a reduction in the paper (See [GGOW17, Construc-
tion 4.2]).

But today we will give a self-contained algorithm. The analysis here reduces to the analysis in
the operator scaling algorithm. But one can also do it directly using the same invariant-theoretic
proof and the same Derksen bound.

Let us explain how the algorithm suggests itself, and should at least have suggested to the
people who characterize it. Remember the obvious definition (i.e. Equation (3.3)) of the optimal
constant says it takes the supremum of all functions. So why do these determinants in the
characterization show up?

They come from Gaussian functions. What Lieb [Lie90] actually showed is that the worst
functions one can take for such inequalities are Gaussian functions. So the optimal f j (x j ) will
look something like exp(−πx j A j x j ), and its integral is the reciprocal of the square root of the
determinant, i.e., ∫

x j

f j (x j ) = 1√
det(A j )

.
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So the question is which of the correlation matrices A j that make it the hardest. It is an optimiza-
tion problem similar to the one that arose in operator scaling. The domain is convex, but the
function itself is not. Nevertheless we can prove that it is in P .

And then comes the beautiful paper of [BCCT08]. they give a characterization for when the
constant is finite.

If you now go back to all the boxes, they all look like linear problems. They are linear
inequalities in the p ′

j s (this linearity explains why we wrote p in the denominator in the definition
of norm). They realized that this works in general. They proved that

BL(B , p) <∞ if and only if p lies in some polytope PB defined by B .

PB is a very simple polytope. There are two conditions. The first one is a normalization condition,
and the second one is a list of inequalities:

Definition 3.18 (Brascamp–Lieb Polytope). A vector p = (p1, . . . , pm) lies in the Brascamp–Lieb
polytope PB if and only if

1.
∑

j p j n j = n;

2. for every vector space V ≤Rn , dim(V ) ≤∑
j p j dim(B j V ).

So PB is a convex set. In fact when you look at it, it is not clear why it is a polytope. Because
there are uncountable many inequalities. But if you think about it, what numbers could appear
in the inequalities? The dimension is a number between 1 and n. So there could be only
exponentially many discrete inequalities, and PB is a polytope. Of course, knowing which of
these possible inequalities are actually facets of the polytope is not obvious, and that’s a major
question: We are given B and p, and we ask if p ∈ PB . Again [GGOW17] can solve this in P (in the
case when p ′

i s have “small" (poly(n)) common denominator).
BL-polytopes are a new class of polytopes that have exponentially many facets. We have an

efficient membership oracle, as well as a separation oracle for them. We can now solve all of
these in polynomial time (with the caveat that pi ’s should have small common denominator). So
that’s a connection to combinatorial optimization that we wanted to talk about. At the end we
hope to give some examples of known optimization problems which give rise to such polytopes.
However, we have no new applications yet, and this remains an interesting challenge.

Before we tell you the algorithm, let us explain why you should have known the algorithm
once you know about the operator scaling algorithm.

Geometric Brascamp–Lieb inequalities

There are two more things that were known in this theory. One is geometric Brascamp–Lieb
inequalities. These were introduced by Ball [Bal89] and Barthe[Bar98]. These are some special
cases of of BL-inequalities, where some nice things happen to the data.

Definition 3.19 (Geometric Brascamp–Lieb data). A BL-data (B , p) is geometric if it satisfies

1. Projection property: B j B T
j = In j for every j . That is, B j ’s are actually projection matrices.
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2. Isotropy:
∑

j p j B T
j B j = In . That is, the matrices are sort of well spread when put together

with weights p j .

What they proved is that, if we are in the geometric case – if we are given a geometric data,
then BL(B , p) = 1.

Theorem 3.20 ([Bal89, Bar98]). If (B , p) is geometric, then BL(B , p) = 1.

Remark 3.21. One can prove that if either (1) or (2) is satisified, then BL(B , p) ≥ 1.

So we understand perfectly well in the geometric condition. There is an inequality and
equality holds with a constant 1.

The characterization of BL(B , p) reminds you of capacity. What do conditions (1) and (2)
remind you of? Double stochasticity (Definition 1.11)! There is a natural group action on
these things. We have all these B j ’s. We can change basis in all of the spaces Rn1 , . . . ,Rnm . This
corresponds to multiplying on the left by appropriate (invertible) matrices C1, . . . ,Cm . We can
also multiply on the right to change simultaneously the basis in Rn . So we transform

(B1, . . . ,Bm) 7→ (C1B1C , . . . ,CmBmC ) =: B̃ .

There is a simply way for which the BL constant is updated. It updates multiplicatively:

Theorem 3.22 ([BCCT08]).
BL(B̃ , p)

BL(B , p)
= 1

det(C )
∏

j det(C j )p j
.

It is a very simple action. Since we care about finding the BL constant, it is clear what we
should do. Take an arbitrary BL-data. Let us bring it to the geometric position by these linear
transformations. After we bring it to geometric position, we know what the constant is. It is 1.
We also know how to go back using the updates.

Scaling algorithm for approximating BL(B , p)

Now the question is how to impose these two conditions together. They conflict with each other.
But they conflict with each other the same way we saw before. So now you should realize what
we should do in the algorithm:

Algorithm 3 Algorithm for (1+ε)-approximating BL(B , p)
Require: (B , p), a BL-data

1: for t = poly(n,d ,1/ε) steps do (here d denotes the common denominator of pi ’s)
2: Enforce Projection property: For each j , let C j = B j B T

j , then B j ←C−1/2
j B j .

3: Enforce Isotropy: Let C =∑
j p j B T

j B j , then B j ← B j C−1/2

4: end for

And this will converge for the same reason like we said about Algorithm 2. We can prove it
directly, or we can prove it by reduction. We can take a BL-data and construct from it a symbolic
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matrix LB ,p , and run the algorithm to compute the capacity of LB ,p and and this will give us
BL(B , p).

This scaling viewpoint also gives the first explicit bounds on BL(B , p) when it is finite. Then
here is another question [BB10, BBFL15] had to deal with in the non-linear case. Say I have the
BL-constant for B and p. Now I perturb B a little bit, by ε in some norm. Let’s say it remains
finite, how much different can it be. Again, the scaling viewpoint gives first explicit bounds here.

This connection to operator scaling also gives another proof of the [BCCT08]’s character-
ization. BL(B , p) is similar to capacity. The two conditions for geometric BL-data are doubly
stochasticity. What does [BCCT08]’s characterization (Definition 3.18) remind you of in the
operator scaling world? The inequality

dim(V ) ≤∑
j

p j dim(B j V )

should remind you of shrunk subspaces. Indeed, it follows directly, after the reduction to
Operator Scaling, by Fact 2.3.

There is also the Reverse BL inequality [Bar98]. It is not as clean, but we can state similar
things for the reverse just because Lieb’s characterization holds there as well [Bar98] and gives
rise to the same optimization problem.

3.4.3 Summary and some applications

We talked about an application of the operator scaling result. Until now it was all algebraic,
most of the problems come from algebra. It turns out there is this completely different theory
in analysis, which is the Brascamp–Lieb inequality. In this world, there is a question that is
completely analagous to the question we asked in the algebraic world. In the algebraic world,
we hypothesize, conjecture an algebraic identity and we want to prove it and think about the
complexity of this class. In the analytic world, we are in the same business with inequalities. For
this large family of inequalities, it turns out the technique in operating scaling does suggest itself.
So we give computational answer, efficient answer of the same nature. We get polynomial time
algorithms to answer the important questions in this theory. Some answers to the basic questions
follow from this operator scaling algorithm. We did not show the connection to operator scaling
directly. But we think everything was suggestive. The objects that appear here, and the structure
theory are very similar to the objects that appear in the operator scaling world. Moreover, this
suggestion immediately suggests an algorithm. It is an alternating minimization algorithm
applied to the data of the BL inequality. So because of this, we have another algorithm in the
analytic world that solves this basic question. Moreover, we give different proofs of some of the
structural results.

Let us now give two examples of BL-polytopes which we know. We do not have new combina-
torial optimization problem that we can optimize over this membership oracle. But we know
some old ones. Also the membership and separation oracles we give have bad dependence on
the common denominator of p ′

i s.
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Matroid. Here the input is an n ×m full-dimension matrix M = [ v1 ··· vm ]. So v1, . . . , vm are
independent. Here the polytope of M , PM is simply the convex hull of the characteristic vectors

{1I : I ⊆ [m],dim(MI ) = n } .

In other words, we look at the full dimension subsets, and we take the convex hull of these
subsets. It turns out this is a BL-polytope. It is easy to see that this is PB , where B j x = 〈

v j , x
〉

. All
the projections are one-dimensional. We must stress that even the one-dimension is extremely
interesting. The scaling is used in Forster’s theorem [For02] about sign rank. Forster analyzed
the same scaling algorithm that we mentioned above in the one dimensional case (although
he just proved convergence which sufficed for him). Also, the problem of putting a matrix to
an isotropic position [HM13] is also a special case of this algorithm. There are other applica-
tions which I did not talk about. For higher-dimension there are applications to combinatorial
geometry [DGOS16].

Matroid Intersection. It is a more complex combinatorial optimization problem. It is a the-
ory that generalizes bipartite matching. We are given two matrices, M1 = [ v1 ··· vm ] and M2 =
[ u1 ··· um ]. Here we only care about sets I that are full-dimension in both M1 and M2. So the
polytope PM1,M2 is simply the convex hull of{

1I : I ⊆ [m],dim(M1I ) = n,dim(M2I ) = n
}

.

Here’s a simple exercise for the students.

Exercise 3.23. Show that PM1,M2 = PB , where B j (x) = 〈
v j , x

〉
,
〈

u j , x
〉

, that is, B j is a projection
onto two dimensions.

Even though there are exponentially many vertices and exponentially many facets in both
cases, it is well known in the optimization community on how to test membership and compute
separation oracle in polynomial time.

One open question is to encode general matching as BL-polytope. Finding applications or
lower bounds, to show what BL-polytopes cannot do, would be interesting.
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Chapter 4

Additional exercises

To conclude these notes, we have collected below some extra exercises, which will help the
interested reader to deepen their understanding of different parts of this material.

Problem 4.1 (Wallace-Bolyai-Gerwien theorem). Prove that a polygon in 2 dimensions can
be transformed into another by cutting (along straight lines) into finite number of pieces and
recomposing them by rotations and translations iff they have the same area. (Hint: Using
triangulation, prove that a polygon of area A has in its orbit a rectangle of side lengths 1 and A. )

Problem 4.2 (Hilbert’s third problem). Hilbert conjectured that the same cut and paste strategy
does not work for polyhedra in 3 dimensions of equal volume. This was proved by Max Dehn in
1900. Challenge yourself to prove that a regular tetrahedron cannot be transformed into a cube of
equal volume. (Hint: construct an invariant other than volume using angles and edge-lengths!)

Problem 4.3 (Invariant rings). Let G É GLm(F) be a linear group that acts on Fm , which after
fixing a basis for Fm can be thought of as acting on variables x = (x1, . . . , xm). Prove that the set of
invariant polynomials F[x]G is a subring of F[x].

Problem 4.4 (Symmetric polynomials). Hilbert in 1890 proved his famous theorem that invariant
rings of linearly reductive group actions (includes all group actions one will ever encounter!) are
finitely generated. Prove this theorem for the natural action of the symmetric group Sm on Fm .
In other words, prove that the ring of symmetric polynomials is generated by the m elementary
symmetric ones.

Problem 4.5. What are the generators for the invariant ring of the following group action:
SLn(C)×SLn(C) acts on Mn(C) by left-right multiplication i.e. (A,B) : X → AX B .

Let G act on a vector space V . Nullcone of the group action is defined as the set of common
zeroes of all homogeneous invariant polynomials. Orbit of a vector v ∈V is the set {g · v : g ∈G}.
Orbit-closure of v is the closure of the orbit in the Zariski topology. When the field is C and the
group G is an algebraic group (like GLn(C)), this coincides with closure in the Euclidean topology.

Problem 4.6. What is the nullcone of the above left-right action? When are two matrices in the
same orbit? When does one lie in the orbit-closure of the other? When do two orbit-closures
intersect?
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Problem 4.7 (Orbits for finite groups). Let G be a finite group that acts on a vector space V . Prove
that two vectors v1, v2 ∈ V are in the same orbit iff p(v1) = p(v2) for all invariant polynomials
p ∈ F[V ]G . (Hint: Use Hilbert’s Nullstellansatz.)

Graph isomorphism is also an orbit problem and it is an excellent open question whether
the above invariant theory approach can lead to efficient algorithms for it by giving a succinct
description of the generating invariants.

The determinantal complexity of the n ×n permanent is defined as the least m s.t. there is
an affine map from the n ×n matrix Y to an m ×m matrix A(Y ) s.t. perm(Y ) = det(A(Y )). The
least such m is denoted by dc(n). The VP vs. VNP question is roughly equivalent to proving
super-polynomial lower bounds on dc(n). The best known lower bound (over the complex
numbers) is dc(n) ≥ n2/2, due to [MR04].

If a group G acts on a vector space V , then this induces an action on polynomials F[V ] as well
as the degree d part F[V ]d via g ·p(v) := p(g−1 ·v). The next problem considers such an action of
GLm(C) on the space of polynomials over Mm(C) induced by the action of GLm(C) on Mm(C) by
left multiplication. Let X[n],[n] denote top left n ×n minor of X .

Problem 4.8 (Permanent vs. Determinant). Suppose the determinantal complexity of the n ×n
permanent is at most m. Then prove that the polynomial X m−n

1,1 perm(X[n],[n]) lies in the orbit-
closure of the polynomial det(X ).

Problem 4.9. Prove that if p ∉ PB , then BL(B , p) =∞.

Problem 4.10. Using Lieb’s description, prove that the BL constant is at least 1 if the BL datum
satisfies either the projection or isotropy property.

Problem 4.11 (BL constant for geometric datum). Using Lieb’s description of the BL constant,
prove that the BL constant of a geometric BL datum is always 1.
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