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MLP Gates

Strong MLP Gates

max: ℓ(y) = max{(c + Cy)T · x | Ax ≤ b + By , x ≥ 0}

min: ℓ(y) = min{(c + Cy)T · x | Ax ≥ b + By , x ≥ 0}

Mateus de Oliveira Oliveira1, Pavel Pudlák2 1University of Bergen 2Czech Academy of Sciences Work financed by the European ReseaRepresentations of Monotone Boolean Functions by Linear ProgramsJuly 10, 2017 4 / 27



MLP Gates

Definition (MLP-Circuit Representation)

We say that an MLP circuit C represents a partial Boolean function
F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for each
a ∈ {0, 1}n.

1 C (a) > 0 if F (a) = 1.

2 C (a) ≤ 0 if F (a) = 0.
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MLP Gates

Weak MLP gates vs Monotone Boolean Circuits

Theorem

Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function, and let C be a

Boolean circuit of size s representing F . Then for any weak type τ , F can

be sharply represented by an MLP gate of type τ and size O(s).
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MLP Gates

Weak MLP gates vs Monotone Boolean Circuits

1 Let BPMn : {0, 1}n
2
→ {0, 1} be the Boolean function that evaluates

to 1 on an input p ∈ {0, 1}n
2
if and only if p represents a bipartite

graph with a perfect matching.

2 The Boolean function BPMn : {0, 1}n
2
→ {0, 1} can be represented

by a max-right MLP gate of size nO(1).

3 Monotone Boolean Circuits computing BPMn must have size nΩ(log n)

(Razborov 1985).

4 Corollary: max-right MLP gates cannot be polynomially simulated
by monotone Boolean circuits.

5 The gap between the complexity of max-right MLP gates and the
complexity of Boolean formulas computing the BPMn function is
even exponential, since Raz and Wigderson have shown a linear
lower-bound on the depth of monotone Boolean circuits computing
BPMn (Raz-Wigderson 1992).
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MLP Gates

Monotone Span Programs

1 Monotone span programs (MSP) were introduced by Karchmer and
Wigderson (Karchmer-Wigderson 1993).

2 Such a program, which is defined over an arbitrary field F, is specified
by a vector c ∈ F

k and a labeled matrix Aρ = (A, ρ) where
1 A is a matrix in F

m×k ,
2 ρ : {1, ...,m} → {p1, ..., pn, ∗} labels rows in A with variables in pi or

with the symbol ∗ (meaning that the row is unlabeled).

3 For an assignment p := w , let Aρ

〈w〉 be the matrix obtained from A by
deleting all rows labeled with variables which are set to 0.
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MLP Gates

Monotone Span Programs

A span program (Aρ, c) represents a partial Boolean function
F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for each
w ∈ {0, 1}n.

F (w) =

{

1 ⇒ ∃y , yTA
ρ

〈w〉 = cT

0 ⇒ ¬∃y , yTA
ρ

〈w〉 = cT
(1)
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MLP Gates

Theorem

Let F : {0, 1}n → {0, 1} be a Boolean function. If F can be represented

by an MSP of size s over the reals, then F can be represented by a

min-right MLP gate of size O(s).
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MLP Gates

1 It has been recently shown that there is a family of functions
GENn : {0, 1}n → {0, 1} which can be computed by polynomial-size
monotone Boolean circuits but which require monotone span
programs over the reals of size exp(nΩ(1)) (Cook et al. 2016).

2 On the other hand, monotone Boolean circuits can be polynomially
simulated by weak MLP gates of any type

3 In particular, weak MLP gates of size polynomial in n can represent
the function GENn : {0, 1}n → {0, 1}. Therefore, we have the
following corollary.

4 Corollary: Weak MLP gates cannot be polynomially simulated by
monotone span programs over the reals.
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Lovás-Schrijver Proof System

Lovás-Schrijver Proof System

A method to construct certificates of unsatisfiability (proofs) for sets of
linear inequalities / CNF formulas.

1 Translate clauses into inequalities in the obvious way.

2 xi → xi

3 x i → (1− xi )

4 (x1 ∨ x2 ∨ x3) → x1 + (1− x2) + x3 ≥ 1.
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Lovás-Schrijver Proof System

Lovás-Schrijver Proof System

Axioms:
1 0 ≥ 0, 1 ≥ 0, 1 ≥ 1
2 0 ≤ pj ≤ 1

3 p2i − pi = 0 (integrality).

Rules:
1 positive linear combinations of linear and quadratic inequalities

2 multiplication: given a linear inequality
∑

i cipi − d ≥ 0, and a
variable pj , derive

pj(
∑

i

cipi − d) ≥ 0 and (1− pj)(
∑

i

cipi − d) ≥ 0.
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Lovás-Schrijver Proof System

1 A proof Π of an inequality
∑

i cipi − d ≥ 0 from Φ is a sequence of
inequalities such that every inequality in the sequence is either an
element of Φ or is derived from previous ones using some LS rule.

2 We say that Π is a refutation of the set of inequalities Φ, if the last
inequality is −d ≥ 0 for some d > 0.

3 The LS proof system is implicationally complete. This means that if
an inequality

∑

i cipi − d ≥ 0 is semantically implied by an initial set
of inequalities Φ, then

∑

i cipi − d ≥ 0 can be derived from Φ by the
application of a sequence of LS-rules (Lovasz-Schrijver 1991).
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Lovás-Schrijver Proof System

Monotone Feasible Interpolation Theorem For LS

1 Let Φ(p, q) ∪ Γ(p, r) be an unsatisfiable set of inequalities such that
the variables p = (p1, ..., pn) occur in Φ only with negative
coefficients.

2 Let Π be an LS refutation of Φ(p, q) ∪ Γ(p, r).
3 Then one can construct an MLP circuit C containing only max MLP

gates which represents a Boolean function F : {0, 1}n → {0, 1} such
that for each a ∈ {0, 1}n,

1 if F (a) = 1, then Φ(a, q) is unsatisfiable,
2 if F (a) = 0, then Γ(a, r) is unsatisfiable,

4 Additionally, the size of the circuit C is polynomial in the size of Π.
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Lovás-Schrijver Proof System

Monotone Feasible Interpolation: Who Cares?

1 Resolution: monotone boolean circuits (Krajicek 1997) .

2 Cutting Planes: monotone real circuits (Pudlak 1997). Monotone real
circuits are circuits with Boolean inputs and outputs, but whose gates
are allowed to be arbitrary 2-input functions over the reals.

3 Razborov’s lower bound on the clique function has been generalized
to monotone real circuits (Pudlak 1997, Cook-Haken 1999).

4 Nullstellensatz: Monotone Span Programs (Pudlak Sgall 1998).
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Lovás-Schrijver Proof System

Framework for proving lower bounds for proof systems

Pick a monotone model of computation M.

Show that refutations of Φ(p, q) ∪ Γ(p, r) can be efficiently translated
into monotone M-circuits which identify which of Φ(p, q) or Γ(p, r)
is unsatisfiable.

Exhibit a family of formulas Φ̂(p, q) ∪ Γ̂(p, q) requiring large
M-circuits to decide whether Φ̂ or Γ̂ is unsatisfiable.

Then refutations of the corresponding formula must be large.
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Lovás-Schrijver Proof System

1 Our interpolation theorem for LS proof systems is stated in terms of
strong MLP gates.

2 Strong MLP gates can compute quadratic functions!

3 Lower bounds seem to be out of reach.

4 Better chance: Weak MLP gates.

5 Size of MLP gates computing monotone functions has some relations
with the field of extended formulations.

Theorem (From Circuits to Gates)

Let C be an MLP circuit of size s where all gates in C are weak MLP

gates of type τ . Then there is an MLP gate ℓC of type τ and size O(s)
such that for each a ∈ R

n for which C (a) is defined, ℓC (a) = C (a).
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Lovás-Schrijver Proof System

Monotone Feasible Interpolation for Mixed LS

1 Let Φ(p, q) ∪ Γ(p, r) be a set of inequalities where p, q range over 0s
and 1s, r range over reals, and the common variables p = (p1, ..., pn)
occur in Φ only with negative coefficients.

2 Let Π be an LS-refutation of Φ(p, q) ∪ Γ(p, r).
3 Then there exists a max-left MLP gate ℓ that represents a Boolean

function F : {0, 1}n → {0, 1} such that for every a ∈ {0, 1}n,
1 if F (a) = 1, then Φ(a, q) is unsatisfiable, and
2 if F (a) = 0, then Γ(a, r) is unsatisfiable,

4 Additionally, the size of the MLP gate ℓ is polynomial in the size of Π.
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Relation Between Proof Systems

LS vs Other Proof Systems

1 Resolution
1 (A ∨ x) ∧ (B ∨ x) → A ∨ B

2 Cutting Planes
1 Positive linear combinations of inequalities.
2 Rounding rule: If ci are integers, then from

∑

cipi ≥ d derive
∑

cipi ≥ ⌈d⌉.
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Relation Between Proof Systems

LS vs Resolution

1 The LS proof system is strictly stronger than Resolution.
1 Resolution proofs can be simulated by LS proofs with a linear blow up

in size.
2 Pigeonhole principle requires resolution proofs of exponential size

(Haken 1985).
3 Pigeonhole principle has LS proofs of polynomial size.
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Relation Between Proof Systems

LS vs Cutting Planes

1 Problems stated in the 1990’s.

2 Determine whether LS proofs can be superpolynomially more concise
than Cutting Planes Proofs. (Solved in this work.)

3 Determine whether cutting-planes proofs can be superpolynomially
more concise than LS proofs. (Still Open)
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Relation Between Proof Systems

CP does not polynomially simulate LS

1 Cutting plane proofs can be interpolated in terms of monotone real
circuits (Pudlák 1997)

2 Monotone real circuit separating unbalanced graphs on n vertices
from perfect matchings must have size nΩ(log n) (Fu 1998, by a
generalization of Razborov’s lower bound for monotone Boolean
circuits).

3 Therefore Unbalanced Graphs vs Perfect Matching Inequalities require
superpolynomial cutting plane proofs. (Fu 1998)

4 Unbalanced Graphs vs Perfect Matching Inequalities have short Mixed
LS proofs. (This work)

5 Bonus: By our monotone interpolation theorem for mixed LS, a single
weak MLP gate can separate unbalanced graphs from perfect
matchings.

6 Therefore weak MLP gates can be superpolynomially stronger than
monotone real circuits.
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Relation Between Proof Systems

Open Problems

1 Prove superpolynomial lower bounds the size of weak MLP gates.

2 What if we make reasonable restrictions on the allowed gates?
Examples: Bound on coefficients, or on the number of internal
variable of the MLP gate.

3 Strengthen connections with extended formulations.

4 Show that monotone real circuits can be superpolynomially more
concise than weak MLP gates. This would show that the two models
are incomparable.

5 Monotone semidefinite programming gates? Which proofs systems
can be interpolated by this model?
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Relation Between Proof Systems

Thank you!
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