Representations of Monotone Boolean Functions by Linear Programs

Mateus de Oliveira Oliveira¹, Pavel Pudlák²

¹University of Bergen ²Czech Academy of Sciences

Work financed by the European Research Council, project FEALORA.

¹ Acknowledges support from the Bergen Research Foundation

July 10, 2017

MLP Gates

 $A \in \mathbb{R}^{m \times k}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^k$, B, C nonnegative matrices in $\mathbb{R}^{m \times n}$.

 $A \in \mathbb{R}^{m \times k}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^k$, B, C nonnegative matrices in $\mathbb{R}^{m \times n}$.

• MAX-RIGHT: $\ell(y) = \max\{c^T \cdot x \mid Ax \leq b + By, \ x \geq 0\}$

 $A \in \mathbb{R}^{m \times k}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^k$, B, C nonnegative matrices in $\mathbb{R}^{m \times n}$.

- MAX-RIGHT: $\ell(y) = \max\{c^T \cdot x \mid Ax \leq b + By, \ x \geq 0\}$
- MIN-RIGHT: $\ell(y) = \min\{c^T \cdot x \mid Ax \ge b + By, \ x \ge 0\}$

 $A \in \mathbb{R}^{m \times k}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^k$, B, C nonnegative matrices in $\mathbb{R}^{m \times n}$.

- MAX-RIGHT: $\ell(y) = \max\{c^T \cdot x \mid Ax < b + By, x > 0\}$
- MIN-RIGHT: $\ell(y) = \min\{c^T \cdot x \mid Ax \geq b + By, x > 0\}$
- MAX-LEFT: $\ell(y) = \max\{(c + Cy)^T \cdot x \mid Ax < b, x > 0\}$

 $A \in \mathbb{R}^{m \times k}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^k$, B, C nonnegative matrices in $\mathbb{R}^{m \times n}$.

- MAX-RIGHT: $\ell(y) = \max\{c^T \cdot x \mid Ax \le b + By, x > 0\}$
- MIN-RIGHT: $\ell(y) = \min\{c^T \cdot x \mid Ax > b + By, x > 0\}$
- MAX-LEFT: $\ell(y) = \max\{(c + Cy)^T \cdot x \mid Ax < b, x > 0\}$
- MIN-LEFT: $\ell(y) = \min\{(c + Cy)^T \cdot x \mid Ax > b, x > 0\}$

3 / 27

Strong MLP Gates

MAX:
$$\ell(y) = \max\{(c + Cy)^T \cdot x \mid Ax \leq b + By, x \geq 0\}$$

MIN:
$$\ell(y) = \min\{(c + Cy)^T \cdot x \mid Ax \ge b + By, \ x \ge 0\}$$

Definition (MLP-Circuit Representation)

We say that an MLP circuit C represents a partial Boolean function $F: \{0,1\}^n \to \{0,1,*\}$ if the following conditions are satisfied for each $a \in \{0,1\}^n$.

- ① C(a) > 0 if F(a) = 1.
- ② $C(a) \le 0$ if F(a) = 0.

Weak MLP gates vs Monotone Boolean Circuits

Theorem

Let $F:\{0,1\}^n \to \{0,1,*\}$ be a partial Boolean function, and let C be a Boolean circuit of size s representing F. Then for any weak type τ , F can be sharply represented by an MLP gate of type τ and size O(s).

Weak MLP gates vs Monotone Boolean Circuits

- ① Let $BPM_n: \{0,1\}^{n^2} \to \{0,1\}$ be the Boolean function that evaluates to 1 on an input $p \in \{0,1\}^{n^2}$ if and only if p represents a bipartite graph with a perfect matching.
- ② The Boolean function $BPM_n: \{0,1\}^{n^2} \to \{0,1\}$ can be represented by a MAX-RIGHT MLP gate of size $n^{O(1)}$.
- **3** Monotone Boolean Circuits computing BPM_n must have size $n^{\Omega(\log n)}$ (Razborov 1985).
- Corollary: MAX-RIGHT MLP gates cannot be polynomially simulated by monotone Boolean circuits.
- The gap between the complexity of MAX-RIGHT MLP gates and the complexity of Boolean formulas computing the BPM_n function is even exponential, since Raz and Wigderson have shown a linear lower-bound on the depth of monotone Boolean circuits computing BPM_n (Raz-Wigderson 1992).

Monotone Span Programs

- Monotone span programs (MSP) were introduced by Karchmer and Wigderson (Karchmer-Wigderson 1993).
- ② Such a program, which is defined over an arbitrary field \mathbb{F} , is specified by a vector $c \in \mathbb{F}^k$ and a labeled matrix $A^{\rho} = (A, \rho)$ where
 - **1** A is a matrix in $\mathbb{F}^{m \times k}$,
- **3** For an assignment p := w, let $A^{\rho}_{\langle w \rangle}$ be the matrix obtained from A by deleting all rows labeled with variables which are set to 0.

Monotone Span Programs

A span program (A^{ρ}, c) represents a partial Boolean function $F: \{0,1\}^n \to \{0,1,*\}$ if the following conditions are satisfied for each $w \in \{0,1\}^n$.

$$F(w) = \begin{cases} 1 \Rightarrow \exists y, \ y^T A^{\rho}_{\langle w \rangle} = c^T \\ 0 \Rightarrow \neg \exists y, \ y^T A^{\rho}_{\langle w \rangle} = c^T \end{cases}$$
 (1)

Theorem

Let $F: \{0,1\}^n \to \{0,1\}$ be a Boolean function. If F can be represented by an MSP of size s over the reals, then F can be represented by a MIN-RIGHT MLP gate of size O(s).

- It has been recently shown that there is a family of functions $\operatorname{GEN}_n: \{0,1\}^n \to \{0,1\}$ which can be computed by polynomial-size monotone Boolean circuits but which require monotone span programs over the reals of size $\exp(n^{\Omega(1)})$ (Cook et al. 2016).
- On the other hand, monotone Boolean circuits can be polynomially simulated by weak MLP gates of any type
- **③** In particular, weak MLP gates of size polynomial in n can represent the function $GEN_n: \{0,1\}^n \to \{0,1\}$. Therefore, we have the following corollary.
- Corollary: Weak MLP gates cannot be polynomially simulated by monotone span programs over the reals.

Lovás-Schrijver Proof System

Lovás-Schrijver Proof System

A method to construct certificates of unsatisfiability (proofs) for sets of linear inequalities / CNF formulas.

- Translate clauses into inequalities in the obvious way.
- $2 x_i \rightarrow x_i$

Lovás-Schrijver Proof System

- Axioms:
 - ① $0 \ge 0$, $1 \ge 0$, $1 \ge 1$
 - ② $0 \le p_i \le 1$
- Rules:
 - positive linear combinations of linear and quadratic inequalities
 - **2** multiplication: given a linear inequality $\sum_i c_i p_i d \ge 0$, and a variable p_j , derive

$$p_j(\sum_i c_i p_i - d) \geq 0$$
 and $(1 - p_j)(\sum_i c_i p_i - d) \geq 0$.

- **1** A proof Π of an inequality $\sum_i c_i p_i d \ge 0$ from Φ is a sequence of inequalities such that every inequality in the sequence is either an element of Φ or is derived from previous ones using some LS rule.
- **②** We say that Π is a refutation of the set of inequalities Φ , if the last inequality is $-d \ge 0$ for some d > 0.
- **③** The LS proof system is implicationally complete. This means that if an inequality $\sum_i c_i p_i d \ge 0$ is semantically implied by an initial set of inequalities Φ , then $\sum_i c_i p_i d \ge 0$ can be derived from Φ by the application of a sequence of LS-rules (Lovasz-Schrijver 1991).

Monotone Feasible Interpolation Theorem For LS

- **1** Let $\Phi(p,q) \cup \Gamma(p,r)$ be an unsatisfiable set of inequalities such that the variables $p = (p_1,...,p_n)$ occur in Φ only with negative coefficients.
- **2** Let Π be an *LS* refutation of $\Phi(p,q) \cup \Gamma(p,r)$.
- ③ Then one can construct an MLP circuit C containing only MAX MLP gates which represents a Boolean function $F: \{0,1\}^n \to \{0,1\}$ such that for each $a \in \{0,1\}^n$,
 - if F(a) = 1, then $\Phi(a, q)$ is unsatisfiable,
 - ② if F(a) = 0, then $\Gamma(a, r)$ is unsatisfiable,
- **3** Additionally, the size of the circuit C is polynomial in the size of Π .

Monotone Feasible Interpolation: Who Cares?

- Resolution: monotone boolean circuits (Krajicek 1997) .
- Cutting Planes: monotone real circuits (Pudlak 1997). Monotone real circuits are circuits with Boolean inputs and outputs, but whose gates are allowed to be arbitrary 2-input functions over the reals.
- Razborov's lower bound on the clique function has been generalized to monotone real circuits (Pudlak 1997, Cook-Haken 1999).
- Nullstellensatz: Monotone Span Programs (Pudlak Sgall 1998).

Framework for proving lower bounds for proof systems

- ullet Pick a monotone model of computation \mathcal{M} .
- Show that refutations of $\Phi(p,q) \cup \Gamma(p,r)$ can be efficiently translated into monotone \mathcal{M} -circuits which identify which of $\Phi(p,q)$ or $\Gamma(p,r)$ is unsatisfiable.
- Exhibit a family of formulas $\hat{\Phi}(p,q) \cup \hat{\Gamma}(p,q)$ requiring large \mathcal{M} -circuits to decide whether $\hat{\Phi}$ or $\hat{\Gamma}$ is unsatisfiable.
- Then refutations of the corresponding formula must be large.

- Our interpolation theorem for LS proof systems is stated in terms of strong MLP gates.
- Strong MLP gates can compute quadratic functions!
- Lower bounds seem to be out of reach.
- Better chance: Weak MLP gates.
- Size of MLP gates computing monotone functions has some relations with the field of extended formulations

Theorem (From Circuits to Gates)

Let C be an MLP circuit of size s where all gates in C are weak MLP gates of type τ . Then there is an MLP gate ℓ_C of type τ and size O(s)such that for each $a \in \mathbb{R}^n$ for which C(a) is defined, $\ell_C(a) = C(a)$.

Monotone Feasible Interpolation for Mixed LS

- **1** Let $\Phi(p,q) \cup \Gamma(p,r)$ be a set of inequalities where p,q range over 0s and 1s, r range over reals, and the common variables $p = (p_1,...,p_n)$ occur in Φ only with negative coefficients.
- ② Let Π be an LS-refutation of $\Phi(p,q) \cup \Gamma(p,r)$.
- **③** Then there exists a MAX-LEFT MLP gate ℓ that represents a Boolean function $F: \{0,1\}^n \to \{0,1\}$ such that for every $a \in \{0,1\}^n$,
 - if F(a) = 1, then $\Phi(a, q)$ is unsatisfiable, and
 - ② if F(a) = 0, then $\Gamma(a, r)$ is unsatisfiable,
- **③** Additionally, the size of the MLP gate ℓ is polynomial in the size of Π .

Relation with Other Proof Systems

LS vs Other Proof Systems

- Resolution
- Q Cutting Planes
 - Positive linear combinations of inequalities.
 - **Q** Rounding rule: If c_i are integers, then from $\sum c_i p_i \ge d$ derive $\sum c_i p_i \ge \lceil d \rceil$.

LS vs Resolution

- The LS proof system is strictly stronger than Resolution.
 - Resolution proofs can be simulated by LS proofs with a linear blow up in size.
 - Pigeonhole principle requires resolution proofs of exponential size (Haken 1985).
 - Pigeonhole principle has LS proofs of polynomial size.

LS vs Cutting Planes

- Problems stated in the 1990's.
- Determine whether LS proofs can be superpolynomially more concise than Cutting Planes Proofs. (Solved in this work.)
- Oetermine whether cutting-planes proofs can be superpolynomially more concise than LS proofs. (Still Open)

CP does not polynomially simulate LS

- Cutting plane proofs can be interpolated in terms of monotone real circuits (Pudlák 1997)
- ② Monotone real circuit separating unbalanced graphs on n vertices from perfect matchings must have size $n^{\Omega(\log n)}$ (Fu 1998, by a generalization of Razborov's lower bound for monotone Boolean circuits).
- Therefore Unbalanced Graphs vs Perfect Matching Inequalities require superpolynomial cutting plane proofs. (Fu 1998)
- Unbalanced Graphs vs Perfect Matching Inequalities have short Mixed LS proofs. (This work)
- Solution Box By our monotone interpolation theorem for mixed LS, a single weak MLP gate can separate unbalanced graphs from perfect matchings.
- Therefore weak MLP gates can be superpolynomially stronger than monotone real circuits.

Open Problems

- Prove superpolynomial lower bounds the size of weak MLP gates.
- What if we make reasonable restrictions on the allowed gates? Examples: Bound on coefficients, or on the number of internal variable of the MLP gate.
- Strengthen connections with extended formulations.
- Show that monotone real circuits can be superpolynomially more concise than weak MLP gates. This would show that the two models are incomparable.
- Monotone semidefinite programming gates? Which proofs systems can be interpolated by this model?

Thank you!