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“property testing?”



why?

Sublinear,

approximate, randomized decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.
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how?

Known space (say, {0, 1}N)
Property P ⊆ {0, 1}N)
Query (oracle) access to unknown x ∈ {0, 1}N

Proximity parameter ε ∈ (0, 1]

Must decide:

x ∈ P , or d(x,P) > ε?

(and be correct on any x with probability at least 2/3)
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how?

Property Testing:

in an (egg)shell.
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it’s complicated

Many flavors…

… one-sided vs. two-sided,

query-based vs. sample-based, uniform
vs. distribution-free, adaptive vs. non-adaptive

6



it’s complicated

Many flavors…

… one-sided vs. two-sided, query-based vs. sample-based,

uniform
vs. distribution-free, adaptive vs. non-adaptive

6



it’s complicated

Many flavors…

… one-sided vs. two-sided, query-based vs. sample-based, uniform
vs. distribution-free,

adaptive vs. non-adaptive

6



it’s complicated

Many flavors…

… one-sided vs. two-sided, query-based vs. sample-based, uniform
vs. distribution-free, adaptive vs. non-adaptive

6



adaptivity



our focus: adaptivity

Non-adaptive algorithm

Makes all its queries upfront:

Q ⊆ [N] = Q(ε, r) = {i1, . . . , iq}

Adaptive algorithm

Each query can depend arbitrarily on the previous answers:
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some observations

Dense graph model

At most a quadratic gap between adaptive and non-adaptive
algorithms: q vs. 2q2 [AFKS00, GT03],[GR11]

Boolean functions

At most an exponential gap between adaptive and non-adaptive
algorithms: q vs. 2q

Bounded-degree graph model

Everything is possible: O(1) vs. Ω(
√
n). [RS06]
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why should we care?

Of course

Fewer queries is always better.

But

Many parallel queries can beat few sequential ones.

Understanding the benefits and tradeoffs of adaptivity is crucial.
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this work

A closer look

Does the power of testing algorithms smoothly grow with the
“amount of adaptivity?”

(and what does “amount of adaptivity” even mean?)
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coming up with a definition

Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and k,q ≤ n. A randomized algorithm is said to
be a (k,q)-round-adaptive tester for P ⊆ 2Ω, if, on input ε ∈ (0, 1] and
granted query access to f : Ω → {0, 1}:

(i) Query Generation: The algorithm proceeds in k+ 1 rounds, such that at
round ℓ ≥ 0, it produces a set of queries Qℓ := {x(ℓ),1, . . . , x(ℓ),|Qℓ|} ⊆ Ω,
based on its own internal randomness and the answers to the previous
sets of queries Q0, . . . ,Qℓ−1, and receives
f(Qℓ) = {f(x(ℓ),1), . . . , f(x(ℓ),|Qℓ|)};

(ii) Completeness: If f ∈ P , then it outputs accept with probability 2/3;

(iii) Soundness: If dist(f,P) > ε, then it outputs reject with probability 2/3.

The query complexity q of the tester is the total number of queries made to
f, i.e., q =

∑k
ℓ=0 |Qℓ|.
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that was a mouthful, but… (i can’t draw)
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some remarks

∙ Other possible choices: e.g., tail-adaptive

∙ Probability amplification
∙ Similar in spirit to…
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we have a definition…

… now, what do we do with it?

Does the power of testing algorithms smoothly grow with the
“amount of adaptivity” number of rounds of adaptivity?
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our results



we have a question…

… and we have an answer.

Yes, the power of testing algorithms smoothly grows with the
number of rounds of adaptivity.

Theorem (Hierarchy Theorem I)

For every n ∈ N and 0 ≤ k ≤ n0.33 there is a property Pn,k of strings
over Fn such that:

(i) there exists a k-round-adaptive tester for Pn,k with query
complexity Õ(k), yet

(ii) any (k− 1)-round-adaptive tester for Pn,k must make Ω̃(n/k2)
queries.
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can we have something a bit less contrived?

It’s only natural.

Yes, that also happens for actual things people care about.

Theorem (Hierarchy Theorem II)

Let k ∈ N be a constant. Then,

(i) there exists a k-round-adaptive tester with query complexity
O(1/ε) for (2k+ 1)-cycle freeness in the bounded-degree graph
model; yet

(ii) any (k− 1)-round-adaptive tester for (2k+ 1)-cycle freeness in
the bounded-degree graph model must make Ω

(√
n
)
queries,

where n is the number of vertices in the graph.
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outline of the proof



outline of the proof

Main Idea

Getting a hierarchy theorem directly for property testing seems hard;
but we know how to get one easily in the decision tree complexity
model. Can we lift it to property testing?

Function f hard to compute in k rounds (but easy in k+ 1)

⇕

Property Cf hard to test in k rounds (but easy in k+ 1)

20



outline of the proof

Main Idea

Getting a hierarchy theorem directly for property testing seems hard;
but we know how to get one easily in the decision tree complexity
model. Can we lift it to property testing?

Function f hard to compute in k rounds (but easy in k+ 1)

⇕

Property Cf hard to test in k rounds (but easy in k+ 1)

20



outline of the proof, ct’d

Fix any α > 0. Let C : Fn
n → Fm

n be a code with constant relative
distance δ(C) > 0, with

∙ linearity: ∀i ∈ [m], there is a(i) ∈ Fn
n s.t. C(x)i = ⟨a(i), x⟩ for all x;

∙ rate: m ≤ n1+α;
∙ testability: C is a one-sided LTC* with non-adaptive tester;
∙ decodability: C is a LDC.*

Theorem ([GGK15])

These things exist.*
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outline of the proof, ct’d ct’d

For any f : Fn
n → {0, 1}, consider the subset of codewords

Cf := C(f−1(1)) = { C(x) : x ∈ Fn
n, f(x) = 1 } ⊆ C

Lemma. (LDT⇝ PT)

k-round-adaptive tester for Cf with query complexity q implies
k-round-adaptive LDT* algorithm for f with query complexity q.

Lemma. (PT⇝ DT)

k-round-adaptive DT algorithm for f with query complexity q implies
k-round-adaptive tester for Cf with query complexity Õ(q).

Transference lemmas

23



outline of the proof, ct’d ct’d

For any f : Fn
n → {0, 1}, consider the subset of codewords

Cf := C(f−1(1)) = { C(x) : x ∈ Fn
n, f(x) = 1 } ⊆ C

Lemma. (LDT⇝ PT)

k-round-adaptive tester for Cf with query complexity q implies
k-round-adaptive LDT* algorithm for f with query complexity q.

Lemma. (PT⇝ DT)

k-round-adaptive DT algorithm for f with query complexity q implies
k-round-adaptive tester for Cf with query complexity Õ(q).
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outline of the proof, ct’d ct’d ct’d

Putting it together

Apply the above for f being the k-iterated address function
fk : Fn

n → {0, 1}.

Lemma

For every 0 ≤ k ≤ Õ(n1/3), no k-round-adaptive LDT algorithm can
compute fk+1 with o(n/(k2 log n)) queries.

Proof.

Reduction to communication complexity,* lower bound of [NW93] on
the “pointer-following” problem.
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other results



the end is nigh



open questions

∙ Can we swap the quantifiers in the theorems? (∀k∃Pk ⇝ ∃P∀k)

∙ Can we prove that for t-juntas?
∙ Can we simulate k rounds with ℓ rounds?
∙ Other applications of the transference lemmas?
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conclusion

∙ A strong hierarchy theorem for adaptivity in property testing

∙ Also holds for some natural properties
∙ Some debatable choice of title
∙ Codes are great!
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Thank you
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