
fifty shades of adaptivity (in property
testing)
An Adaptivity Hierarchy Theorem for Property Testing

Clément Canonne (Columbia University)
July 9, 2017

Joint work with Tom Gur (Weizmann Institute UC Berkeley)

“property testing?”

why?

Sublinear,

approximate, randomized decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

why?

Sublinear, approximate,

randomized decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

why?

Sublinear, approximate, randomized

decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

why?

Sublinear, approximate, randomized decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

why?

Sublinear, approximate, randomized decision algorithms that make
queries

∙ Big object: too big

∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

why?

Sublinear, approximate, randomized decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data

∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

why?

Sublinear, approximate, randomized decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

why?

Sublinear, approximate, randomized decision algorithms that make
queries

∙ Big object: too big
∙ Expensive access: pricey data
∙ “Model selection”: many options
∙ Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with
very few lookups.

2

3

how?

Known space (say, {0, 1}N)
Property P ⊆ {0, 1}N)
Query (oracle) access to unknown x ∈ {0, 1}N

Proximity parameter ε ∈ (0, 1]

Must decide:

x ∈ P , or d(x,P) > ε?

(and be correct on any x with probability at least 2/3)

4

how?

Known space (say, {0, 1}N)
Property P ⊆ {0, 1}N)
Query (oracle) access to unknown x ∈ {0, 1}N

Proximity parameter ε ∈ (0, 1]

Must decide:

x ∈ P

, or d(x,P) > ε?

(and be correct on any x with probability at least 2/3)

4

how?

Known space (say, {0, 1}N)
Property P ⊆ {0, 1}N)
Query (oracle) access to unknown x ∈ {0, 1}N

Proximity parameter ε ∈ (0, 1]

Must decide:

x ∈ P , or d(x,P) > ε?

(and be correct on any x with probability at least 2/3)

4

how?

Known space (say, {0, 1}N)
Property P ⊆ {0, 1}N)
Query (oracle) access to unknown x ∈ {0, 1}N

Proximity parameter ε ∈ (0, 1]

Must decide:

x ∈ P , or d(x,P) > ε?

(and be correct on any x with probability at least 2/3)

4

how?

Property Testing:

in an (egg)shell.

5

how?

Property Testing:

in an (egg)shell.

5

how?

Property Testing:

in an (egg)shell.
5

it’s complicated

Many flavors…

… one-sided vs. two-sided,

query-based vs. sample-based, uniform
vs. distribution-free, adaptive vs. non-adaptive

6

it’s complicated

Many flavors…

… one-sided vs. two-sided, query-based vs. sample-based,

uniform
vs. distribution-free, adaptive vs. non-adaptive

6

it’s complicated

Many flavors…

… one-sided vs. two-sided, query-based vs. sample-based, uniform
vs. distribution-free,

adaptive vs. non-adaptive

6

it’s complicated

Many flavors…

… one-sided vs. two-sided, query-based vs. sample-based, uniform
vs. distribution-free, adaptive vs. non-adaptive

6

adaptivity

our focus: adaptivity

Non-adaptive algorithm

Makes all its queries upfront:

Q ⊆ [N] = Q(ε, r) = {i1, . . . , iq}

Adaptive algorithm

Each query can depend arbitrarily on the previous answers:

8

some observations

Dense graph model

At most a quadratic gap between adaptive and non-adaptive
algorithms: q vs. 2q2 [AFKS00, GT03],[GR11]

Boolean functions

At most an exponential gap between adaptive and non-adaptive
algorithms: q vs. 2q

Bounded-degree graph model

Everything is possible: O(1) vs. Ω(
√
n). [RS06]

9

why should we care?

Of course

Fewer queries is always better.

But

Many parallel queries can beat few sequential ones.

Understanding the benefits and tradeoffs of adaptivity is crucial.

10

why should we care?

Of course

Fewer queries is always better.

But

Many parallel queries can beat few sequential ones.

Understanding the benefits and tradeoffs of adaptivity is crucial.

10

why should we care?

Of course

Fewer queries is always better.

But

Many parallel queries can beat few sequential ones.

Understanding the benefits and tradeoffs of adaptivity is crucial.

10

this work

A closer look

Does the power of testing algorithms smoothly grow with the
“amount of adaptivity?”

(and what does “amount of adaptivity” even mean?)

11

this work

A closer look

Does the power of testing algorithms smoothly grow with the
“amount of adaptivity?”

(and what does “amount of adaptivity” even mean?)

11

coming up with a definition

Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and k,q ≤ n. A randomized algorithm is said to
be a (k,q)-round-adaptive tester for P ⊆ 2Ω, if, on input ε ∈ (0, 1] and
granted query access to f : Ω → {0, 1}:

(i) Query Generation: The algorithm proceeds in k+ 1 rounds, such that at
round ℓ ≥ 0, it produces a set of queries Qℓ := {x(ℓ),1, . . . , x(ℓ),|Qℓ|} ⊆ Ω,
based on its own internal randomness and the answers to the previous
sets of queries Q0, . . . ,Qℓ−1, and receives
f(Qℓ) = {f(x(ℓ),1), . . . , f(x(ℓ),|Qℓ|)};

(ii) Completeness: If f ∈ P , then it outputs accept with probability 2/3;

(iii) Soundness: If dist(f,P) > ε, then it outputs reject with probability 2/3.

The query complexity q of the tester is the total number of queries made to
f, i.e., q =

∑k
ℓ=0 |Qℓ|.

12

coming up with a definition

Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and k,q ≤ n. A randomized algorithm is said to
be a (k,q)-round-adaptive tester for P ⊆ 2Ω, if, on input ε ∈ (0, 1] and
granted query access to f : Ω → {0, 1}:

(i) Query Generation: The algorithm proceeds in k+ 1 rounds, such that at
round ℓ ≥ 0, it produces a set of queries Qℓ := {x(ℓ),1, . . . , x(ℓ),|Qℓ|} ⊆ Ω,
based on its own internal randomness and the answers to the previous
sets of queries Q0, . . . ,Qℓ−1, and receives
f(Qℓ) = {f(x(ℓ),1), . . . , f(x(ℓ),|Qℓ|)};

(ii) Completeness: If f ∈ P , then it outputs accept with probability 2/3;

(iii) Soundness: If dist(f,P) > ε, then it outputs reject with probability 2/3.

The query complexity q of the tester is the total number of queries made to
f, i.e., q =

∑k
ℓ=0 |Qℓ|.

12

coming up with a definition

Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and k,q ≤ n. A randomized algorithm is said to
be a (k,q)-round-adaptive tester for P ⊆ 2Ω, if, on input ε ∈ (0, 1] and
granted query access to f : Ω → {0, 1}:

(i) Query Generation: The algorithm proceeds in k+ 1 rounds, such that at
round ℓ ≥ 0, it produces a set of queries Qℓ := {x(ℓ),1, . . . , x(ℓ),|Qℓ|} ⊆ Ω,
based on its own internal randomness and the answers to the previous
sets of queries Q0, . . . ,Qℓ−1, and receives
f(Qℓ) = {f(x(ℓ),1), . . . , f(x(ℓ),|Qℓ|)};

(ii) Completeness: If f ∈ P , then it outputs accept with probability 2/3;

(iii) Soundness: If dist(f,P) > ε, then it outputs reject with probability 2/3.

The query complexity q of the tester is the total number of queries made to
f, i.e., q =

∑k
ℓ=0 |Qℓ|.

12

coming up with a definition

Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and k,q ≤ n. A randomized algorithm is said to
be a (k,q)-round-adaptive tester for P ⊆ 2Ω, if, on input ε ∈ (0, 1] and
granted query access to f : Ω → {0, 1}:

(i) Query Generation: The algorithm proceeds in k+ 1 rounds, such that at
round ℓ ≥ 0, it produces a set of queries Qℓ := {x(ℓ),1, . . . , x(ℓ),|Qℓ|} ⊆ Ω,
based on its own internal randomness and the answers to the previous
sets of queries Q0, . . . ,Qℓ−1, and receives
f(Qℓ) = {f(x(ℓ),1), . . . , f(x(ℓ),|Qℓ|)};

(ii) Completeness: If f ∈ P , then it outputs accept with probability 2/3;

(iii) Soundness: If dist(f,P) > ε, then it outputs reject with probability 2/3.

The query complexity q of the tester is the total number of queries made to
f, i.e., q =

∑k
ℓ=0 |Qℓ|.

12

that was a mouthful, but… (i can’t draw)

13

some remarks

∙ Other possible choices: e.g., tail-adaptive

∙ Probability amplification
∙ Similar in spirit to…

14

some remarks

∙ Other possible choices: e.g., tail-adaptive
∙ Probability amplification

∙ Similar in spirit to…

14

some remarks

∙ Other possible choices: e.g., tail-adaptive
∙ Probability amplification
∙ Similar in spirit to…

14

we have a definition…

… now, what do we do with it?

Does the power of testing algorithms smoothly grow with the
“amount of adaptivity” number of rounds of adaptivity?

15

our results

we have a question…

… and we have an answer.

Yes, the power of testing algorithms smoothly grows with the
number of rounds of adaptivity.

Theorem (Hierarchy Theorem I)

For every n ∈ N and 0 ≤ k ≤ n0.33 there is a property Pn,k of strings
over Fn such that:

(i) there exists a k-round-adaptive tester for Pn,k with query
complexity Õ(k), yet

(ii) any (k− 1)-round-adaptive tester for Pn,k must make Ω̃(n/k2)
queries.

17

we have a question…

… and we have an answer.

Yes, the power of testing algorithms smoothly grows with the
number of rounds of adaptivity.

Theorem (Hierarchy Theorem I)

For every n ∈ N and 0 ≤ k ≤ n0.33 there is a property Pn,k of strings
over Fn such that:

(i) there exists a k-round-adaptive tester for Pn,k with query
complexity Õ(k), yet

(ii) any (k− 1)-round-adaptive tester for Pn,k must make Ω̃(n/k2)
queries.

17

can we have something a bit less contrived?

It’s only natural.

Yes, that also happens for actual things people care about.

Theorem (Hierarchy Theorem II)

Let k ∈ N be a constant. Then,

(i) there exists a k-round-adaptive tester with query complexity
O(1/ε) for (2k+ 1)-cycle freeness in the bounded-degree graph
model; yet

(ii) any (k− 1)-round-adaptive tester for (2k+ 1)-cycle freeness in
the bounded-degree graph model must make Ω

(√
n
)
queries,

where n is the number of vertices in the graph.

18

can we have something a bit less contrived?

It’s only natural.

Yes, that also happens for actual things people care about.

Theorem (Hierarchy Theorem II)

Let k ∈ N be a constant. Then,

(i) there exists a k-round-adaptive tester with query complexity
O(1/ε) for (2k+ 1)-cycle freeness in the bounded-degree graph
model; yet

(ii) any (k− 1)-round-adaptive tester for (2k+ 1)-cycle freeness in
the bounded-degree graph model must make Ω

(√
n
)
queries,

where n is the number of vertices in the graph.

18

outline of the proof

outline of the proof

Main Idea

Getting a hierarchy theorem directly for property testing seems hard;
but we know how to get one easily in the decision tree complexity
model. Can we lift it to property testing?

Function f hard to compute in k rounds (but easy in k+ 1)

⇕

Property Cf hard to test in k rounds (but easy in k+ 1)

20

outline of the proof

Main Idea

Getting a hierarchy theorem directly for property testing seems hard;
but we know how to get one easily in the decision tree complexity
model. Can we lift it to property testing?

Function f hard to compute in k rounds (but easy in k+ 1)

⇕

Property Cf hard to test in k rounds (but easy in k+ 1)

20

outline of the proof, ct’d

Fix any α > 0. Let C : Fn
n → Fm

n be a code with constant relative
distance δ(C) > 0, with

∙ linearity: ∀i ∈ [m], there is a(i) ∈ Fn
n s.t. C(x)i = ⟨a(i), x⟩ for all x;

∙ rate: m ≤ n1+α;
∙ testability: C is a one-sided LTC* with non-adaptive tester;
∙ decodability: C is a LDC.*

Theorem ([GGK15])

These things exist.*

21

outline of the proof, ct’d

Fix any α > 0. Let C : Fn
n → Fm

n be a code with constant relative
distance δ(C) > 0, with

∙ linearity: ∀i ∈ [m], there is a(i) ∈ Fn
n s.t. C(x)i = ⟨a(i), x⟩ for all x;

∙ rate: m ≤ n1+α;
∙ testability: C is a one-sided LTC* with non-adaptive tester;
∙ decodability: C is a LDC.*

Theorem ([GGK15])

These things exist.*

21

22

outline of the proof, ct’d ct’d

For any f : Fn
n → {0, 1}, consider the subset of codewords

Cf := C(f−1(1)) = { C(x) : x ∈ Fn
n, f(x) = 1 } ⊆ C

Lemma. (LDT⇝ PT)

k-round-adaptive tester for Cf with query complexity q implies
k-round-adaptive LDT* algorithm for f with query complexity q.

Lemma. (PT⇝ DT)

k-round-adaptive DT algorithm for f with query complexity q implies
k-round-adaptive tester for Cf with query complexity Õ(q).

Transference lemmas

23

outline of the proof, ct’d ct’d

For any f : Fn
n → {0, 1}, consider the subset of codewords

Cf := C(f−1(1)) = { C(x) : x ∈ Fn
n, f(x) = 1 } ⊆ C

Lemma. (LDT⇝ PT)

k-round-adaptive tester for Cf with query complexity q implies
k-round-adaptive LDT* algorithm for f with query complexity q.

Lemma. (PT⇝ DT)

k-round-adaptive DT algorithm for f with query complexity q implies
k-round-adaptive tester for Cf with query complexity Õ(q).

Transference lemmas

23

outline of the proof, ct’d ct’d

For any f : Fn
n → {0, 1}, consider the subset of codewords

Cf := C(f−1(1)) = { C(x) : x ∈ Fn
n, f(x) = 1 } ⊆ C

Lemma. (LDT⇝ PT)

k-round-adaptive tester for Cf with query complexity q implies
k-round-adaptive LDT* algorithm for f with query complexity q.

Lemma. (PT⇝ DT)

k-round-adaptive DT algorithm for f with query complexity q implies
k-round-adaptive tester for Cf with query complexity Õ(q).

Transference lemmas

23

outline of the proof, ct’d ct’d ct’d

Putting it together

Apply the above for f being the k-iterated address function
fk : Fn

n → {0, 1}.

Lemma

For every 0 ≤ k ≤ Õ(n1/3), no k-round-adaptive LDT algorithm can
compute fk+1 with o(n/(k2 log n)) queries.

Proof.

Reduction to communication complexity,* lower bound of [NW93] on
the “pointer-following” problem.

24

outline of the proof, ct’d ct’d ct’d

Putting it together

Apply the above for f being the k-iterated address function
fk : Fn

n → {0, 1}.

Lemma

For every 0 ≤ k ≤ Õ(n1/3), no k-round-adaptive LDT algorithm can
compute fk+1 with o(n/(k2 log n)) queries.

Proof.

Reduction to communication complexity,* lower bound of [NW93] on
the “pointer-following” problem.

24

other results

the end is nigh

open questions

∙ Can we swap the quantifiers in the theorems? (∀k∃Pk ⇝ ∃P∀k)

∙ Can we prove that for t-juntas?
∙ Can we simulate k rounds with ℓ rounds?
∙ Other applications of the transference lemmas?

27

open questions

∙ Can we swap the quantifiers in the theorems? (∀k∃Pk ⇝ ∃P∀k)
∙ Can we prove that for t-juntas?

∙ Can we simulate k rounds with ℓ rounds?
∙ Other applications of the transference lemmas?

27

open questions

∙ Can we swap the quantifiers in the theorems? (∀k∃Pk ⇝ ∃P∀k)
∙ Can we prove that for t-juntas?
∙ Can we simulate k rounds with ℓ rounds?

∙ Other applications of the transference lemmas?

27

open questions

∙ Can we swap the quantifiers in the theorems? (∀k∃Pk ⇝ ∃P∀k)
∙ Can we prove that for t-juntas?
∙ Can we simulate k rounds with ℓ rounds?
∙ Other applications of the transference lemmas?

27

conclusion

∙ A strong hierarchy theorem for adaptivity in property testing

∙ Also holds for some natural properties
∙ Some debatable choice of title
∙ Codes are great!

28

conclusion

∙ A strong hierarchy theorem for adaptivity in property testing
∙ Also holds for some natural properties

∙ Some debatable choice of title
∙ Codes are great!

28

conclusion

∙ A strong hierarchy theorem for adaptivity in property testing
∙ Also holds for some natural properties
∙ Some debatable choice of title

∙ Codes are great!

28

conclusion

∙ A strong hierarchy theorem for adaptivity in property testing
∙ Also holds for some natural properties
∙ Some debatable choice of title
∙ Codes are great!

28

Thank you

29

Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy.
Efficient testing of large graphs.
Combinatorica, 20(4):451–476, 2000.

Oded Goldreich, Tom Gur, and Ilan Komargodski.
Strong locally testable codes with relaxed local decoders.
In Conference on Computational Complexity, volume 33 of LIPIcs, pages 1–41. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

Oded Goldreich and Dana Ron.
Algorithmic aspects of property testing in the dense graphs model.
SIAM J. Comput., 40(2):376–445, 2011.

Oded Goldreich and Luca Trevisan.
Three theorems regarding testing graph properties.
Random Struct. Algorithms, 23(1):23–57, 2003.

Noam Nisan and Avi Wigderson.
Rounds in communication complexity revisited.
SIAM Journal on Computing, 22(1):211–219, February 1993.

Sofya Raskhodnikova and Adam D. Smith.
A note on adaptivity in testing properties of bounded degree graphs.
Electronic Colloquium on Computational Complexity (ECCC), 13(089), 2006.

29

	``Property Testing?''
	Adaptivity
	Our Results
	Outline of the Proof
	Other Results
	The End is Nigh

	anm0:
	anm1:
	anm2:

