Conspiracies between Learning Algorithms, Lower Bounds, and Pseudorandomness

Igor Carboni Oliveira

University of Oxford

Joint work with **Rahul Santhanam** (Oxford)

Context

Minor algorithmic improvements imply lower bounds (Williams, 2010).

NEXP not contained in **ACC**⁰ (Williams, 2011), and extensions.

This Work

Analogue of Williams' celebrated lower bound program in Learning Theory.

Combining and extending existing connections.

Further applications of the "Pseudorandom Method":

Hardness of **MCSP**, Karp-Lipton Theorems for **BPEXP**. etc.

Lower bounds from learning

Learning Model (Randomized, MQs, Uniform Dist.)

A Boolean circuit class C is fixed.

$$f: \{0,1\}^n \to \{0,1\}$$
 from $\mathbf{C}[\mathbf{s}(\mathbf{n})]$ is selected.

$$\frac{a}{f(a)} f$$

Learner must output w.h.p a hypothesis h such that:

$$\Pr_{x \in \{0,1\}^n} [h(x) = f(x)] \ge 1 - 1/n.$$

Some learning algorithms

Combinatorial lower bounds

Lower bounds are unknown, or obtained via diagonalization

$$\mathsf{DNF} \subsetneq \mathsf{AC}^0 \subsetneq \mathsf{AC}^0[p] \subsetneq \mathsf{ACC}^0 \subseteq \mathsf{TC}^0 \subseteq \mathsf{Formula}[\mathsf{poly}] \subseteq \mathsf{Circuit}[\mathsf{poly}].$$

[Jac97] DNFs can be learned in polynomial time.

Harmonic-Sieve/Boosting

[LMN93] AC⁰ circuits learnable in quasi-polynomial time.

Fourier Concentration

[CIKK16] AC⁰[p] learnable in quasi-polynomial time.

Pseudorandomness/Natural Property

Can we learn AC⁰ circuits with Mod 6 gates in sub-exponential time?

As far as I know, open even for:

AND o OR o MAJ circuits, MOD₂ o AND o THR circuits.

Definition. Non-trivial learning algorithm:

- Runs in randomized time $\leq \frac{2^n}{n^{\omega(1)}}$.
- ► For every function **f** in **C**:

$$\Pr_{x \in \{0,1\}^n} [h(x) = f(x)] \ge \frac{1}{2} + \frac{1}{n}.$$

Non-trivial learning implies lower bounds

Let $BPE = BPTIME[2^{O(n)}].$

Theorem. Let **C** be any subclass of Boolean circuits closed under restrictions.

Example: $C = (depth-6)-ACC^0$, AND o OR o THR, etc.

If for each k>1, $C[n^k]$ admits a non-trivial learning algorithm, then for each k>1, **BPE** is not contained in $C[n^k]$.

LBs from Proofs, Derandomization, Learning

	Non-trivial SAT/Proof System	Non-trivial Derandomization	Non-trivial Deterministic Exact Learning	Non-trivial Randomized Learning
Assumption	Proofs checked in deterministic time $2^n/n^{\omega(1)}$	Algorithm runs in deterministic time $2^n/n^{\omega(1)}$	Learner runs in deterministic time $< 2^n$	Learner runs in randomized time $2^n/n^{\omega(1)}$
Consequence	LBs for NEXP	LBs for NEXP	LBs for EXP	LBs for BPEXP
Reference	[Wil10]	[Wil10], [SW13]	[KKO13]	[This Work]

Remarks on lower bounds from Learning

Learning approach won't directly work for classes containing PRFs.

Conceivable that one can design non-trivial learning algorithms for a class C under the assumption that **BPEXP** is contained in **P/poly**.

Learning connection applies to virtually any circuit class of interest, and there is **no depth blow-up**.

It can lead to new lower bounds for restricted classes such as **THR o THR** and **ACC**⁰.

Previous work on learning vs. lower bounds

➤ Systematic investigation initiated about 10 years ago:

[FK06] Lower bounds for BPEXP from polynomial time learnability.

[HH11] Lower bounds for EXP from deterministic exact learning.

[KKO13] Optimal lower bounds for EXP from deterministic exact learning.

[Vol14] Lower bounds for BPP/1 from polynomial time learnability.

[Vol'15] Further results for learning arithmetic circuits.

A Challenge in Getting Lower Bounds from Randomized Learning

Williams' lower bounds from non-trivial SAT algorithms: a non-trivial algorithm can be used to violate a tight hierarchy theorem for NTIME.

Challenge in Randomized Learning: lack of strong hierarchy theorems for BPTIME.

The approach has to be indirect, and we must do something different ...

Speedup Phenomenon in Learning Theory

Speedup Lemma. Let \mathcal{C} be any class of Boolean circuits containing $AC^0[2]$.

Suppose that for each $k \ge 1$ the class $C(n^k)$ admits a nontrivial learning algorithm.

Then for each $k \ge 1$ and $\varepsilon > 0$, the class $C(n^k)$ is strongly learnable in time $O(2^{n^{\varepsilon}})$.

SAT Algorithms vs. Learning Algorithms

Main Techniques: "Speedup Lemma"

1. Given oracle access to $f: \{0,1\}^n \to \{0,1\}$ in C[poly], implicitly construct a "pseudorandom" ensemble of functions in C[poly] on n^{δ} bits.

(using NW-generator + Hardness Amplification [CIKK16])

Intuition: Non-trivial learner can **distinguish** this ensemble from random functions. This can be done in time $2^{O(n^{\delta})}$.

2. This distinguisher (i.e. the non-trivial learner) and the reconstruction procedures of NW-generator and Hardness Amplification can be used to strongly learn f in time $2^{O(n^{\delta})}$.

Main Techniques: "LBs from Learning"

1. Starting from non-trivial learner, apply the Speedup Lemma to obtain a sub-exponential time learner.

2. Adapting the techniques from [KKO13], randomized sub-exponential time learnability of C[poly] BPE $\not\subseteq C[n^k]$ implies **BPE lower bounds** against $C[n^k]$.

3. Using an additional win-win argument, this holds under minimal assumptions on C, and with no blow-up in the reduction.

Combining and extending existing connections

► Further motivation for the following question:

Which algorithmic **upper bounds** imply **lower bounds** for **ZPEXP** and **REXP**, respectively?

One-sided error: Lower bounds for REXP

We combine the satisfiability and learning connections to lower bounds to show:

[Informal]

If a circuit class C admits both **non-trivial SAT** and **non-trivial Learning** then **REXP** is not contained in C.

Corollary. [ACC⁰ lower bounds from non-trivial learning]

If for every depth **d>1** and modulo **m>1** there is $\varepsilon > 0$ such that $ACC_{d,m}^0(2^{n^{\varepsilon}})$ has non-trivial learning algorithms, then $REXP \nsubseteq ACC^0(poly(n))$.

Indicates that combining the two frameworks might have further benefits.

Zero-error: Lower bounds for ZPEXP

[IKW02], [Wil13] Connections between natural properties without density condition, Satisfiability Algorithms, and NEXP lower bounds.

[CIKK16] Connections between BPP-natural properties and Learning Algorithms.

We give a new connection between **P-natural properties** and **ZPEXP** lower bounds.

Let $C(poly) \subseteq P/poly$ be a circuit class closed under restrictions.

Theorem. [ZPEXP lower bounds from natural properties] If for some $\delta > 0$ there are P-natural properties against $\mathcal{C}(2^{n^{\delta}})$ then $\mathsf{ZPEXP} \not\subseteq \mathcal{C}(\mathsf{poly}(n))$.

Further Applications of our Techniques

A rich web of techniques and connections

Use of (conditional) **PRGs** and related tools, often in contexts where (**pseudo**)**randomness** is not intrinsic.

Karp-Lipton Collapses

Connection between uniform class and non-uniform circuit class:

[KL80] If
$$NP \subseteq P/poly$$
 then $PH = \Sigma_2^p \cap \Pi_2^p$.

Assumption	Consequence	Major Application
EXP in P/poly	EXP = MA [BFT98]	MA _{EXP} not in P/poly [BFT98]
NEXP in P/poly	NEXP = EXP [IKW02]	SAT / LB Connection [Wil10]

Randomized Exponential Classes such as **BPEXP**?

Karp-Lipton for randomized classes

Theorem 1. If BPE \subseteq i.o.SIZE[n^k] then BPEXP \subseteq i.o.EXP/ $O(\log n)$.

The advice is needed for technical reasons. But it can be eliminated in some cases:

Theorem 2. If BPE \subseteq i.o.SIZE[n^k] then REXP \subseteq i.o.EXP.

Check paper for Karp-Lipton collapses for ZPEXP, and related results.

Hardness of MCSP

Minimum Circuit Size Problem:

Given 1s and a Boolean function $f: \{0,1\}^n \to \{0,1\}$ represented as an N-bit string,

Is it computed by a circuit of size at most s?

Recent work on MCSP and its variants: [KC00], [ABK+06], [AHM+08], [KS08], [AD14], [HP15], [AHK15], [MW15], [HP15], [AGM15], [HW16].

[ABK+06] MCSP is not in AC^0 .

Open. Prove that MCSP is not in $AC^0[2]$

Our result

We prove the first hardness result for MCSP for a standard complexity class beyond AC^0 :

Theorem. If MCSP is in TC⁰ then NC¹ collapses to TC⁰.

The argument describes a non-uniform TC⁰ reduction from NC¹ to MCSP via pseudorandomness.

Additional applications of our techniques

► Equivalences between truth-table compression [CKK+14] and randomized learning models in the sub-exponential time regime.

(For instance, **equivalence queries** can be eliminated in sub-exp time randomized learning of expressive concept classes.)

A dichotomy between Learnability and Pseudorandomness in the non-uniform exponential-security setting:

"A circuit class is either **learnable** or contains **pseudorandom functions**, but not both."

In other words, learnability is the only obstruction to pseudorandomness.

(Morally, **ACC**⁰ is either learnable in sub-exp time or contains exp-secure PRFs.)

Problems and Directions

Is there a **speedup phenomenon** for complex classes (say AC⁰[p] and above) for

learning under the uniform distribution with random examples?

Can we establish **new** lower bounds for modest circuit classes by designing non-trivial learning algorithms?

Towards lower bounds against NC?

Non-trivial learning implies lower bounds:

First example of lower bound connection from **non-trivial randomized algorithms**.

Problem. Establish a connection between non-trivial randomized SAT algorithms and lower bounds.

(First step in a program to obtain unconditional lower bounds against NC.)

Thank you