### Conspiracies between Learning Algorithms, Lower Bounds, and Pseudorandomness

**Igor Carboni Oliveira** University of Oxford

Joint work with Rahul Santhanam (Oxford)



Minor algorithmic improvements imply lower bounds (Williams, 2010).

NEXP not contained in ACC<sup>0</sup> (Williams, 2011), and extensions.

## This Work

Analogue of Williams' celebrated lower bound program in Learning Theory.

Combining and extending existing connections.

Further applications of the "Pseudorandom Method":

Hardness of **MCSP**, Karp-Lipton Theorems for **BPEXP**. etc.

# Lower bounds from learning

### Learning Model (Randomized, MQs, Uniform Dist.)

A Boolean circuit class C is fixed.

 $f \colon \{0,1\}^n \to \{0,1\}$  from  $\mathbf{C}[\mathbf{s}(\mathbf{n})]$  is selected.



Learner must output w.h.p a hypothesis h such that:

$$\Pr_{x \in \{0,1\}^n} [h(x) = f(x)] \ge 1 - 1/n.$$

# Some learning algorithms

Combinatorial lower bounds Lower bounds are unknown, or obtained via diagonalization

 $\mathsf{DNF} \subsetneq \mathsf{AC}^0 \subsetneq \mathsf{AC}^0[p] \subsetneq \mathsf{ACC}^0 \subseteq \mathsf{TC}^0 \subseteq \mathsf{Formula}[\mathsf{poly}] \subseteq \mathsf{Circuit}[\mathsf{poly}].$ 

### [Jac97] DNFs can be learned in polynomial time. Harmonic-Sieve/Boosting

[LMN93] AC<sup>0</sup> circuits learnable in quasi-polynomial time. Fourier Concentration

**[CIKK16]** AC<sup>0</sup>[**p**] learnable in **quasi-polynomial** time.

Pseudorandomness/Natural Property

Can we learn AC<sup>0</sup> circuits with Mod 6 gates in sub-exponential time?

As far as I know, open even for:

AND o OR o MAJ circuits, MOD<sub>2</sub> o AND o THR circuits.

**Definition.** Non-trivial learning algorithm:

Runs in randomized time 
$$\leq \frac{2^n}{n^{\omega(1)}}$$
.

► For every function **f** in **C**:

$$\Pr_{x \in \{0,1\}^n} [h(x) = f(x)] \ge \frac{1}{2} + \frac{1}{n}.$$

Non-trivial learning implies lower bounds

Let **BPE** = **BPTIME** $[2^{O(n)}]$ .

**Theorem.** Let **C** be any subclass of Boolean circuits closed under restrictions.

**Example:**  $C = (depth-6)-ACC^0$ , AND o OR o THR, etc.

If for each k>1,  $C[n^k]$  admits a non-trivial learning algorithm, then for each k > 1, BPE is not contained in  $C[n^k]$ .

# LBs from Proofs, Derandomization, Learning

|             | Non-trivial<br>SAT/Proof<br>System                       | Non-trivial<br>Derandomization                                  | Non-trivial<br>Deterministic<br>Exact Learning | Non-trivial<br>Randomized<br>Learning               |
|-------------|----------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| Assumption  | Proofs checked in deterministic time $2^n/n^{\omega(1)}$ | Algorithm runs in <b>deterministic</b> time $2^n/n^{\omega(1)}$ | Learner runs in deterministic time $< 2^n$     | Learner runs in randomized time $2^n/n^{\omega(1)}$ |
| Consequence | LBs for <b>NEXP</b>                                      | LBs for <b>NEXP</b>                                             | LBs for <b>EXP</b>                             | LBs for <b>BPEXP</b>                                |
| Reference   | [Wil10]                                                  | [Wil10], [SW13]                                                 | [KKO13]                                        | [This Work]                                         |

# Remarks on lower bounds from Learning

Learning approach won't directly work for classes containing PRFs.

Conceivable that one can design non-trivial learning algorithms for a class **C** under the assumption that **BPEXP** is contained in **P**/**poly**.

Learning connection applies to virtually any circuit class of interest, and there is **no depth blow-up**.

It can lead to new lower bounds for restricted classes such as **THR o THR** and **ACC**<sup>0</sup>.

# Previous work on learning vs. lower bounds

Systematic investigation initiated about 10 years ago:

[FK06] Lower bounds for BPEXP from polynomial time learnability.
[HH11] Lower bounds for EXP from deterministic exact learning.
[KK013] Optimal lower bounds for EXP from deterministic exact learning.
[Vol14] Lower bounds for BPP/1 from polynomial time learnability.
[Vol'15] Further results for learning arithmetic circuits.

# A Challenge in Getting Lower Bounds from Randomized Learning

Williams' lower bounds from non-trivial SAT algorithms: a non-trivial algorithm can be used to violate a tight hierarchy theorem for NTIME.

Challenge in Randomized Learning: lack of strong hierarchy theorems for BPTIME.

The approach has to be indirect, and we must do something different ...

Speedup Phenomenon in Learning Theory

**Speedup Lemma.** Let C be any class of Boolean circuits containing AC<sup>0</sup>[2].

Suppose that for each  $k \ge 1$  the class  $C(n^k)$  admits a non-trivial learning algorithm.

Then for each  $k \ge 1$  and  $\varepsilon > 0$ , the class  $\mathcal{C}(n^k)$  is **strongly learnable** in time  $O(2^{n^{\varepsilon}})$ .

# SAT Algorithms vs. Learning Algorithms



# Main Techniques: "Speedup Lemma"

Non-trivial Learner

+ NW-Generator





**1.** Given oracle access to  $f: \{0,1\}^n \to \{0,1\}$  in C[poly], implicitly construct a "pseudorandom" ensemble of functions in C[poly] on  $\mathbf{n}^{\delta}$  bits.

(using NW-generator + Hardness Amplification [CIKK16])

**Intuition: Non-trivial learner** can **distinguish** this ensemble from random functions. This can be done in time  $2^{O(n^{\delta})}$ .

2. This distinguisher (i.e. the non-trivial learner) and the reconstruction procedures of NW-generator and Hardness Amplification can be used to strongly learn f in time  $2^{O(n^{\delta})}$ .

# Main Techniques: "LBs from Learning"

**1.** Starting from **non-trivial learner**, apply the **Speedup Lemma** to obtain a **sub-exponential time learner**.

 $2^{n}/n^{\omega(1)}$  **Speedup**  $2^{O(n^{\delta})}$ 

 $2^{O(n^{\delta})}$ 2. Adapting the techniques from [KKO13], randomized sub-exponential time learnability of C[poly] BPE  $\not\subseteq C[n^k]$  implies BPE lower bounds against C[n<sup>k</sup>].

**3.** Using an additional **win-win argument**, this holds under **minimal assumptions** on **C**, and **with no blow-up in the reduction**.

# Combining and extending existing connections



[OS17] Connections to pseudo-deterministic algorithms.

Further motivation for the following question:

Which algorithmic **upper bounds** imply **lower bounds** for **ZPEXP** and **REXP**, respectively?

# One-sided error: Lower bounds for REXP

We combine the satisfiability and learning connections to lower bounds to show:

### [Informal]

If a circuit class C admits both **non-trivial SAT** and **non-trivial Learning** then **REXP** is not contained in C.

**Corollary.** [ACC<sup>0</sup> lower bounds from non-trivial learning] If for every depth d>1 and modulo m>1 there is  $\varepsilon > 0$  such that ACC<sup>0</sup><sub>d,m</sub>(2<sup>n<sup> $\varepsilon$ </sup></sup>) has non-trivial learning algorithms, then REXP  $\not\subseteq$  ACC<sup>0</sup>(poly(n)).

Indicates that combining the two frameworks might have further benefits.

# Zero-error: Lower bounds for ZPEXP

[IKW02], [Wil13] Connections between natural properties without density condition, Satisfiability Algorithms, and NEXP lower bounds.

[CIKK16] Connections between BPP-natural properties and Learning Algorithms.

We give a new connection between P-natural properties and ZPEXP lower bounds. Let  $C(poly) \subseteq P/poly$  be a circuit class closed under restrictions.

**Theorem.** [**ZPEXP lower bounds from natural properties**] If for some  $\delta > 0$  there are P-natural properties against  $\mathcal{C}(2^{n^{\delta}})$  then ZPEXP  $\nsubseteq \mathcal{C}(\mathsf{poly}(n))$ .

# Further Applications of our Techniques

# A rich web of techniques and connections



Use of (conditional) **PRGs** and related tools, often in contexts where (**pseudo**)**randomness** is not intrinsic.

# Karp-Lipton Collapses

Connection between **uniform** class and **non-uniform** circuit class:

**[KL80]** If NP  $\subseteq$  P/poly then PH =  $\Sigma_2^p \cap \Pi_2^p$ .

| Assumption                            | Consequence                      | Major Application                           |
|---------------------------------------|----------------------------------|---------------------------------------------|
| EXP in P/poly                         | <b>EXP = MA</b> [ <b>BFT98</b> ] | MA <sub>EXP</sub> not in P/poly [BFT98]     |
| <b>NEXP</b> in <b>P</b> / <b>poly</b> | NEXP = EXP [IKW02]               | <b>SAT / LB</b> Connection [ <b>Wil10</b> ] |

Randomized Exponential Classes such as **BPEXP** ?

# Karp-Lipton for randomized classes

### **Theorem 1.** If $BPE \subseteq i.o.SIZE[n^k]$ then $BPEXP \subseteq i.o.EXP/O(\log n)$ .

The advice is needed for technical reasons. But it can be eliminated in some cases:

### **Theorem 2.** If $BPE \subseteq i.o.SIZE[n^k]$ then $REXP \subseteq i.o.EXP$ .

Check paper for Karp-Lipton collapses for ZPEXP, and related results.

# Hardness of MCSP

### Minimum Circuit Size Problem:

Given 1<sup>s</sup> and a Boolean function  $f: \{0,1\}^n \to \{0,1\}$  represented as an N-bit string,

#### Is it computed by a circuit of size at most s?

Recent work on MCSP and its variants: [KC00], [ABK+06], [AHM+08], [KS08], [AD14], [HP15], [AHK15], [MW15], [HP15], [AGM15], [HW16].

[ABK+06] MCSP is not in AC<sup>0</sup>.

**Open.** Prove that MCSP is not in  $AC^{0}[2]$ 

# Our result

We prove the first hardness result for MCSP for a standard complexity class beyond AC<sup>0</sup>:

### **Theorem.** If **MCSP** is in **TC<sup>0</sup>** then **NC<sup>1</sup>** collapses to **TC<sup>0</sup>**.

The argument describes a non-uniform **TC**<sup>0</sup> reduction from **NC**<sup>1</sup> to **MCSP** via **pseudorandomness**.

# Additional applications of our techniques

Equivalences between truth-table compression [CKK+14] and randomized learning models in the sub-exponential time regime.

(For instance, **equivalence queries** can be eliminated in sub-exp time randomized learning of expressive concept classes.)

A dichotomy between Learnability and Pseudorandomness in the non-uniform exponential-security setting:

"A circuit class is either **learnable** or contains **pseudorandom functions**, but not both."

In other words, learnability is the only obstruction to pseudorandomness.

(Morally, ACC<sup>0</sup> is either learnable in sub-exp time or contains exp-secure PRFs.)

# Problems and Directions

Is there a **speedup phenomenon** for complex classes (say AC<sup>0</sup>[p] and above) for

learning under the uniform distribution with **random examples**?

Can we establish **new** lower bounds for modest circuit classes by designing non-trivial learning algorithms?

# Towards lower bounds against NC?

### Non-trivial learning implies lower bounds:

First example of lower bound connection from **non-trivial randomized algorithms**.

**Problem.** Establish a connection between **non-trivial randomized SAT** algorithms and **lower bounds**.

(First step in a program to obtain unconditional lower bounds against NC.)

Thank you