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Minor algorithmic improvements imply lower bounds (Williams, 2010).

NEXP not contained in ACC0 (Williams, 2011), and extensions.

Context



Combining and extending existing connections.

Analogue of Williams’ celebrated lower bound program in Learning Theory.

Further applications of the “Pseudorandom Method”:  

Hardness of MCSP,
Karp-Lipton Theorems for BPEXP.
etc.

This Work
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Lower bounds from learning
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Learning Model (Randomized, MQs, Uniform Dist.)

Randomized 
Algorithm

from  C[s(n)] is selected.

A Boolean circuit class  C is fixed.

Learner must output w.h.p a hypothesis      such that: 
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Some learning algorithms

[Jac97] DNFs can be learned in polynomial time.

[LMN93] AC0 circuits learnable in quasi-polynomial time.

[CIKK16] AC0[p] learnable in quasi-polynomial time.

Fourier Concentration

Harmonic-Sieve/Boosting

Pseudorandomness/Natural Property

Combinatorial lower bounds Lower bounds are unknown, or obtained via diagonalization
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Can we learn AC0 circuits with Mod 6 gates in sub-exponential time?

AND o OR o MAJ circuits,   MOD2 o AND o THR circuits.

As far as I know,  open even for:

Definition. Non-trivial learning algorithm:

▶ Runs in randomized time 

▶ For every function f in C:



Theorem. Let C be any subclass of Boolean circuits closed 
under restrictions.

Example: C = (depth-6)-ACC0,   AND o OR o THR,  etc.

If for each k>1,  C[nk] admits a non-trivial learning algorithm, 
then for each k > 1,  BPE is not contained in C[nk]. 
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Non-trivial learning implies lower bounds
Let BPE =  BPTIME[2O(n)].



LBs from Proofs, Derandomization, Learning
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Non-trivial
SAT/Proof 

System
Non-trivial 

Derandomization
Non-trivial 

Deterministic
Exact Learning

Non-trivial 
Randomized

Learning

Assumption
Proofs checked in 

deterministic time
Algorithm runs in 
deterministic time

Learner runs in
deterministic time

Learner runs in
randomized time

Consequence LBs for NEXP LBs for NEXP LBs for EXP LBs for BPEXP

Reference [Wil10] [Wil10], [SW13] [KKO13] [This Work]



Remarks on lower bounds from Learning
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▶ Learning connection applies to virtually any circuit class of interest, 
and there is no depth blow-up. 

It can lead to new lower bounds for restricted classes such as THR o THR
and  ACC0.

▶ Learning approach won’t directly work for classes containing PRFs. 

▶ Conceivable that one can design non-trivial learning algorithms for a 
class C under the assumption that BPEXP is contained in P/poly.



Previous work on learning vs. lower bounds
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[FK06] Lower bounds for BPEXP from polynomial time learnability.

[HH11] Lower bounds for EXP from deterministic exact learning. 

[KKO13] Optimal lower bounds for EXP from deterministic exact learning.

[Vol14] Lower bounds for BPP/1 from polynomial time learnability.

[Vol’15] Further results for learning arithmetic circuits. 

▶ Systematic investigation initiated about 10 years ago:
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Challenge in Randomized Learning: 
lack of strong hierarchy theorems for BPTIME.

Williams’ lower bounds from non-trivial SAT algorithms: a non-trivial 
algorithm can be used to violate a tight hierarchy theorem for NTIME.

A Challenge in Getting Lower Bounds from 
Randomized Learning

The approach has to be indirect, and we must do something different ...



Speedup Phenomenon in Learning Theory
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Suppose that for each              the class              admits a non-
trivial learning algorithm.

Speedup Lemma. Let       be any class of Boolean circuits 
containing AC0[2].

Then for each              and             ,  the class              is 
strongly learnable in time 



SAT Algorithms vs. Learning Algorithms
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Main Techniques: “Speedup Lemma”
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1. Given oracle access to in C[poly], implicitly construct 
a “pseudorandom” ensemble of functions in C[poly] on nδ bits.

(using NW-generator + Hardness Amplification [CIKK16]) 

Intuition: Non-trivial learner can distinguish this ensemble from random 
functions.  This can be done in time

2. This distinguisher (i.e. the non-trivial learner) and the reconstruction 
procedures of NW-generator and Hardness Amplification can be used to 
strongly learn in time

Non-trivial 
Learner NW-Generator Hardness 

Amplification+ + Faster Learner!



Main Techniques: “LBs from Learning”
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1.  Starting from non-trivial learner, apply the Speedup 
Lemma to obtain a sub-exponential time learner.

2.  Adapting the techniques from [KKO13], 
randomized sub-exponential time learnability of C[poly]
implies BPE lower bounds against C[nk].

3.  Using an additional win-win argument, this holds under minimal 
assumptions on C, and with no blow-up in the reduction.

Speedup



Combining and extending 
existing connections
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EXP ZPEXP REXP

BPEXP

NEXP

MAEXP

Nontrivial SAT /
ACC0 lower bounds    [Wil11]

P/poly lower bounds [BFT98]

Non-trivial learning [This work]

Well-known connection to PRGs/ 
derandomization of BPP [IW97]

[OS17] Connections to pseudo-deterministic algorithms.

▶ Further motivation for the following question:

Which algorithmic upper bounds imply lower bounds for ZPEXP
and REXP, respectively?



Indicates that combining the two frameworks 
might have further benefits.
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One-sided error: Lower bounds for REXP
We combine the satisfiability and learning connections to lower bounds to show: 

[ Informal ]
If a circuit class C admits both non-trivial SAT and non-trivial Learning then 
REXP is not contained in C.

Corollary. [ACC0 lower bounds from non-trivial learning]
If for every depth d>1 and modulo m>1 there is             such that     
has non-trivial learning algorithms, then 
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Zero-error: Lower bounds for ZPEXP
[IKW02], [Wil13]   Connections between natural properties without density condition, 
Satisfiability Algorithms, and NEXP lower bounds.

[CIKK16]  Connections between BPP-natural properties and Learning Algorithms.

We give a new connection between P-natural properties and ZPEXP lower bounds.

Theorem. [ZPEXP lower bounds from natural properties]
If for some              there are P-natural properties against              then   

Let be  a circuit class closed under restrictions.



Further Applications of our Techniques
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A rich web of techniques and connections

“Pseudorandom Method”
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Use of (conditional) PRGs and related tools, often in 
contexts where (pseudo)randomness is not intrinsic. 

Learning 
speedup

Hardness 
of MCSP

Karp-Lipton 
collapses

LBs from 
Learning



Karp-Lipton Collapses
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Connection between uniform class and non-uniform circuit class:

[KL80]  If        then

Assumption Consequence Major Application
EXP in P/poly EXP = MA [BFT98] MAEXP not in P/poly [BFT98]

NEXP in P/poly NEXP = EXP [IKW02] SAT / LB Connection [Wil10]

Randomized Exponential Classes such as BPEXP ?



Karp-Lipton for randomized classes
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The advice is needed for technical reasons. But it can be eliminated in some cases:

Theorem 1. If then

Theorem 2. If then

▶ Check paper for Karp-Lipton collapses for ZPEXP, and related results.



Hardness of MCSP
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Minimum Circuit Size Problem:

Given  1s and a Boolean function represented as an N-bit string, 

Is it computed by a circuit of size at most s?

Recent work on MCSP and its variants:  [KC00], [ABK+06], [AHM+08], [KS08], [AD14], 
[HP15], [AHK15], [MW15], [HP15], [AGM15], [HW16].

[ABK+06]  MCSP is not in AC0. Open. Prove that MCSP is not in AC0[2] 
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We prove the first hardness result for MCSP for a standard complexity class 
beyond AC0:

Theorem. If MCSP is in TC0 then NC1 collapses to TC0. 

Our result

The argument describes a non-uniform TC0 reduction from NC1 to MCSP
via pseudorandomness. 
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Additional applications of our techniques

▶ A dichotomy between Learnability and Pseudorandomness in the 
non-uniform exponential-security setting:

▶ Equivalences between truth-table compression [CKK+14] and randomized 
learning models in the sub-exponential time regime.

“A circuit class is either learnable or contains pseudorandom functions, 
but not both.”

In other words, learnability is the only obstruction to pseudorandomness.

(Morally, ACC0  is either learnable in sub-exp time or contains exp-secure PRFs.)

(For instance, equivalence queries can be eliminated in sub-exp
time randomized learning of expressive concept classes.)



Problems and Directions
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Is there a speedup phenomenon for complex classes (say AC0[p] and above) for

learning under the uniform distribution with random examples?

Can we establish new lower bounds for modest circuit classes by designing 
non-trivial learning algorithms?
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Non-trivial learning implies lower bounds:

First example of lower bound connection from non-trivial randomized
algorithms.

Problem.   Establish a connection between non-trivial randomized 
SAT algorithms and lower bounds.

(First step in a program to obtain unconditional lower bounds against NC.) 

Towards lower bounds against NC?



Thank you
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