
Bounded independence
plus noise fools products

Chin Ho Lee
Northeastern University

1

Emanuele Viola
Northeastern University

Elad Haramaty
Harvard University

Outline

1. Bounded independence, noise, product tests

2. Main Result

3. Complexity of Decoding

4. Pseudorandom generators

5. Proof Sketch

6. Open questions

2

Bounded independence

Definition:

A distribution � over 0,1 � is �-wise independent if
every � bits of � are uniform

• Introduced by [Carter-Wegman77] as hash functions

• Used everywhere in TCS

3

Bounded independence

Major research direction:

• Understand what tests � are fooled by bounded
independence

• i.e., E � � is close to E � 	

4

�

Combinatorial rectangles [Even-Goldreich-Luby-Nisan-Velickovic98]

Bounded depth circuits [Bazzi09], [Razborov09], [Braverman10], [Tal14]

Halfspaces [Diakonikolas-Gopalan-Jaiswal-Servedio-Viola10],

[Gopalan-O’Donnell-Wu-Zuckerman10],

[Diakonikolas-Kane-Nelson10]

Product tests

Definition:

: (0,1)�→ [−1,1] is a product test if

 ��, … , �� ≔ ∏ �� ��� , where

	��, … , ��: 	 0,1 → −1,1 are � arbitrary functions
on disjoint � bits.

5

�� �� … ��

��

…

� bits

��

� bits

��

� bits

×

Bounded independence cannot
fool product tests

Fact:

��	− 1 -wise independence cannot fool product tests

Proof:

• Parity on �� bits is a product over {−1, 1}

• Uniform over the same parity is (�� − 1)-wise
independent

6

Product test (!:= ��)

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

Bounded independence cannot
fool product tests

Same example gives error 2$� over product tests
over 0,1

• So bounded independence cannot fool
combinatorial rectangles with error better than 2$�

• Error not good enough for some applications
• e.g. communication lower bounds

• Too large to sum over 2� rectangles

7

Small bias cannot fool product
tests

Same issue with small-bias distributions [Naor-Naor]

Fact:

2$% � -bias cannot fool product tests

Proof:

• Inner product (IP) on �� bits is a product

• Uniform over IP = 1 is 2$% � -biased

8

Small-bias cannot fool product
tests Product test (!:= ��)

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

Our starting observation

All these examples break when few bits of � are
perturbed

• one bit of noise fools parity completely

Our main result shows this is a general phenomenon

• Bounded independence plus noise fools product
tests with good error bound

Original motivation [L Viola]: sum of small-bias
distributions

9

Outline

1. Bounded independence, noise, product tests

2. Main Result

3. Complexity of Decoding

4. Pseudorandom generators

5. Proof Sketch

6. Open questions

10

Main Result

Theorem:

Let

• � := �-wise independent on �� symbols

• & := set each symbol to uniform independently with
probability '

For any product test
,

E
 � + & − E
 	 ≤ 1 − '
%

�

11

Product test

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

Main Result

1. Tight when � = *(1)

2. Is false for independence < 	�

3. � is not even pairwise independent over blocks

• Different from previous works

4. Similar result holds when � is 2$%()-almost �-

wise independent or 2$%()-biased
12

Product test

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

Theorem:

� := �-wise independent on �� symbols

& := set each symbol to uniform independently

with probability '

E
 � + & − E
 	 ≤ 1 − '
%

�

Main Result

5. Makes sense for wide range of '
1. ' = ,/�, � = * 1 ,	 error 0.01

Constant number of noise symbols

2. ' = Ω 1 , � = * 1 , error 2$%

Constant fraction of noise symbols

• Critical for our applications

13

Product test

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

Theorem:

� := �-wise independent on �� symbols

& := set each symbol to uniform independently

with probability '

E
 � + & − E
 	 ≤ 1 − '
%

�

Noise Random Restrictions

Can interpret our result as:

On average, a product test becomes simpler under a
random restriction [Subbotovskaya61]

- it can be fooled by bounded independence

Differences:

Our results hold for

• arbitrary functions

• arbitrary ', useful for our applications

14

Outline

1. Bounded independence, noise, product tests

2. Main Result

3. Complexity of Decoding

4. Pseudorandom generators

5. Proof Sketch

6. Open questions

15

Complexity of decoding

Error-correcting codes

• a fundamental concept in computer science

• many applications in TCS

Natural to ask

• What is the complexity of encoding and decoding?

• [Bar-Yossef—Reingold—Shaltiel—Trevisan02]

• [Bazzi—Mitter05]

• [Gronemeier06]

16

The complexity of decoding 1
symbol

A number-in-hand multiparty communication problem

• Given 0 = &�, � + �1234 split among � = *(1)
parties

• Compute ��

17

0� 0� 05

��

Our results

This talk: Code ≔	 6,
7

�88
-Reed—Solomon over F:

• evaluations of degree-
7

�88
polynomials at 6 positions

• linear rate and linear minimum distance

Theorem:

For most encodings and positions, any � = *(1)
parties, Ω '6 bits of communication is required to
decode 1 symbol better than random guessing

• This is essentially tight
18

' = fraction of noise symbols

Our results

19

Previous lower bounds Our lower bounds

Streaming Communication

For computing the entire

message

For computing one symbol

of the message

No better for decoding than

encoding

Stronger for decoding

than encoding

Outline

1. Bounded independence, noise, product tests

2. Main Result

3. Complexity of Decoding

4. Pseudorandom generators

5. Proof Sketch

6. Open questions

20

Pseudorandom generators (PRGs)

Definition:

;:	 0,1 ℓ → 0,1 � is a pseudorandom generator
for test �, if

E � ; 	ℓ 	– 	E � 	� ≤ 1/3

Major line of research: constructing PRGs for one-
way space bounded algorithms

• RL vs L

• State of the art [Nisan92, Impagliazzo-Nisan-
Wigderson94, Nisan-Zuckerman96]

21

Pseudorandom generators (PRGs)

Better PRGs are known on fooling special cases

• Combinatorial rectangles

• [Even-Goldreich-Luby-Nisan-Velickovic98]

• [Lu02]

• [Gopalan-Meka-Reingold-Trevisan-Vadhan12]

• Combinatorial shapes

• [Gopalan-Meka-Reingold-Zuckerman13]

• [De15]

• Product tests (aka. Fourier shapes)

• [Gopalan-Kane-Meka15]

22

Fixed-order vs any-order products

23

�� �� … ��

��

…

� bits

��

� bits

��

� bits

�� �� … ��

��

…

�� ��

[Bogdanov-Papakonstantinou-Wan11], [Impagliazzo-
Meka-Zuckerman12], [Reingold-Steinke-Vadhan13]

What if input bits are read in any order?

Previous results

For � = 2

• [BPW11] gives PRGs with seed length 1.99�

For larger �
• [Reingold-Steinke-Vadhan13]

• seed length *?(!	log	C) for read-once width-C
branching programs

• implies seed length *?(�5/�	 �) for rectangles

24

Our Results

Theorem

New PRGs for any-order product tests with �
functions on � bits

• For � ≤ �, seed length 2� + *?(��)

Close to optimal when � = * 1

• For �	 ≥ �, seed length *(�) + *?(��)

Improves on [RSV13]’s *?(�5/�	 �) by *(�)

For � = 2, [BPW11] remains the best known for
rectangles

25

Product test

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

PRGs for other models

Our theorem holds for product tests where each ��
has output in the complex unit disk = E ∈ ℂ:	 E ≤ 1

• aka. Fourier shapes in [Gopalan-Kane-Meka15]

[GKM15] shows PRGs for products implies PRGs for

• generalized halfspaces, combinatorial shapes, ...

We obtain PRGs with seed length *? � � for these

models that read bits in any order
26

Bounded Independence plus
noise fools space

Our main result also gives a simple PRG for one-way
space algorithms

Theorem:

• �: !�/5log	!-wise independent on ! bits

• &: set each bit to uniform independent with
probability 0.01

For any one-way logspace algorithm H: 0,1 � → 0,1 ,
E H � + & − E H 	 ≤ 1(1)

27

Outline

1. Bounded independence, noise, product tests

2. Main Result

3. Complexity of Decoding

4. Pseudorandom generators

5. Proof Sketch

6. Open questions

28

Proof Sketch (= 3)

For any �, I, ℎ:	 0,1 → −1,1 on disjoint n bits,

E (�Iℎ) � + & − E � & I & ℎ ≤ 3 1 − ' /K

Fourier Analysis

1. Noise damps high order Fourier coefficients

2. Independence fools low degree terms

29

� := �-wise independent on 3� bits

& := set each bit to uniform

independently with probability '

Proof Sketch

Decompose � into � � = �L � + �M � , where

• �L � ≔ ∑ �OPP QR SP �

• �M � ≔ ∑ �OPP TR SP �

• U	 = 	�/6

Similarly for I and ℎ

Write �Iℎ = �IℎM + �IℎL

= �IℎM + �IMℎL + �ILℎL

= �IℎM + �IMℎL + �MILℎL + �LILℎL

30

E (�Iℎ) � + & − E � & I & ℎ ≤ 3 1 − ' /K

� := �-wise independent on 3� bits

& := set each bit to uniform

independently with probability '

Proof Sketch

E (�Iℎ)(� + &) − & � & I & ℎ

= E �IℎM + E �IMℎL + E �MILℎL +

E �LILℎL − E � E I E[ℎ]

• �LILℎL has degree ≤ �

• E[(�LILℎL)(� + &)] − E � E I E[ℎ] = 0

• Bound each of E �IℎM , E �IMℎL , E �MILℎL

under � + & by 1	− ' R

31

E (�Iℎ) � + & − E � & I & ℎ ≤ 3 1 − ' /K

� := �-wise independent on 3� bits

& := set each bit to uniform

independently with probability '

Bounding M L

EW,X �(��+&�)IM(��+&�)ℎL(�5+&5)

≤ 	EW |EXZ
[� ��+&�]| EX[

IM ��+&� |EX\
[ℎL �5+&5]|

≤ 	EW EX[
IM ��+&� |EX\

[ℎL �5+&5]|

• EX[
IM ��+&� EX\

[ℎL �5+&5]	has degree > �

• But we can apply Cauchy-Schwarz, and bound instead

• E^[EX[
IM 	 + &�

�
] by 1 − ' �R, and

• E^[EX\
ℎL 	 + &5

�
] by 1

32

� � = �L � + �M �

�L � ≔ ∑ �OPP QR SP �

�M � ≔ ∑ �OPP TR SP �

U	 = 	�/6

PRG constructions

For � ≤ �,

1. � = *(2$)-biased distribution on �� bits

2. & = Set each bit to uniform with prob. ' = Ò(�/�)

(1) takes 2�	+ *(1) bits

(2) takes ��a ' = *? �� bits to sample &’ ≈ 	&

For � ≥ �,

• we apply the PRGs recursively

• similar to [RSV13], originated from [Gopalan-Meka-
Reingold-Trevisan-Vadhan12]

33

• For � ≤ �, seed length 2� + *?(��)

• For �	 ≥ �, seed length O(n) + *?(��)

Recursive construction

Sample & by

1. d: setting each bit to 1 with probability ' = 	1/8

2. Setting the 1-positions to uniform

• For every fixed f ∈ �, U ∈ d,
 becomes a product
test
’ = ∏ ��’� on U bits

• With high probability, each �� has input length ≤ �/4

• remains true when d is almost �-wise independent
34

�� �� �5 �h �i �K �j �i ��

��

…

� bits

��

� bits

��

� bits

Outline

1. Bounded independence, noise, product tests

2. Main Result

3. Complexity of Decoding

4. Pseudorandom generators

5. Proof Sketch

6. Open questions

35

Open Questions

Theorem:

Let

• � := �-wise independent on �� symbols

• & := set each symbol to uniform independently with
probability '

For any product test
,

E
 � + & − E
 	 ≤ 1 − '
%

�

Can we remove the 1/� in the exponent?

• Could give much better PRGs for any-order product
tests 36

Product test

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

Open Questions

Theorem:

• �: !�/5log	!-wise independent on ! bits

• &: set each bit to uniform independent with
probability 0.01

For any logspace algorithm H: 0,1 � → 0,1 ,
E H � + & − E H 	 ≤ 1(1)

Can we use less independence?

37

Product test

: (0,1)�→ [−1,1]

 ��, … , �� ≔ ∏ �� ���

Thank you!

38

