Quantified Derandomization and Randomized Tests

Roei Tell, Weizmann Institute of Science

CCC, July 2017

The plan

1. Randomized tests

> a useful general technique

2. New derandomization results

- > of AC⁰, AC⁰[⊕], TC⁰, and polynomials
- > using randomized tests

Randomized Tests

a useful general technique

Explicit constructions

Goal: Deterministically find object in dense set G.

fixing a specific $G \subseteq \{0,1\}^n$ s.t. $|G| > (1-ε) \cdot 2^n$, construct a deterministic alg. that finds $x \in G$

Deterministic tests

prove (analysis):

- > exists deterministic test T:{0,1}ⁿ→{0,1} for G
- > T is "very simple", fooled by PRG

deterministic algorithm:

 \rightarrow enumerate output-set of PRG to find $x \in G$

Randomized tests

> same approach works if T is randomized

prove (analysis):

- > exists randomized test **T**:{0,1}ⁿ→{0,1} for G
- \rightarrow T \in supp(**T**) are "very simple", fooled by PRG

deterministic algorithm:

 \rightarrow enumerate output-set of PRG to find $x \in G$

Randomized tests: the advantage

- > Randomized test potentially much simpler than any deterministic test
- > Randomness "for free", exists only in analysis
- > Also works, e.g., if T distinguishes between
 - \rightarrow excellent objects $E \subseteq G$
 - → bad objects ¬G

Randomized tests: the advantage

- Randomized test potentially much simpler than any deterministic test
- > Randomness "for free", exists only in analysis
- > Also works, e.g., if T distinguishes between
 - → excellent objects E ⊆ G
 - bad objects

Randomized tests: an example

- > Fix $f:\{0,1\}^n \rightarrow \{0,1\}$, partition $\{0,1\}^n$ to large subsets
- Assume: For most subsets S in partition, $f_s \equiv 1$
- > Goal: Find subset S with $Pr_{x \in S}[f(x)=1] > 0.99$

deterministic test

evaluate f on **|S|** points

randomized test

evaluate f on **O(1)** points

Randomized tests: digest

To find $x \in G$:

- Construct randomized test for G (or for relaxed problem)
- Randomness only in the analysis (test can use randomness "for free")
- Deterministic algorithm
 enumerates output-set of PRG

Quantified Derandomization

the generic problem

Classical derandomization

> the standard one-sided error derandomization problem

Given a circuit C: $\{0,1\}^n \rightarrow \{0,1\}$ from a circuit class \mathcal{C} , distinguish between the cases:

- C accepts most of its inputs
- > C rejects all of its inputs

> the (C,B) quantified derandomization problem

Given a circuit C: $\{0,1\}^n \rightarrow \{0,1\}$ from a circuit class \mathcal{C} , distinguish between the cases:

- > C accepts all but B(n) of its inputs
- C rejects all of its inputs

> the (C,B) quantified derandomization problem

Given a circuit C: $\{0,1\}^n \rightarrow \{0,1\}$ from a circuit class \mathcal{C} , distinguish between the cases:

- > C accepts all but B(n) of its inputs
- C rejects all of its inputs
- \rightarrow what happens if B(n)=0? and if B(n)=2ⁿ/2?

Fix a circuit class **C**.

[→] for now think **C**=P/poly

Fix a circuit class **C**.

Fix a circuit class **C**.

[→] for now think **C**=P/poly

The **goal** of quantified derandomization

To make the green and red cross and get standard derandomization results.

A relaxed derandomization problem

fixing a circuit class C, what can we do?

solve **approximate counting** (½ vs 0)
solve **quantified approx. counting** (1-o(1) vs 0)

Quantified Derandomization of AC⁰

derandomized switching lemma (using randomized tests)

AC⁰: touching the threshold

> circuits of constant depth D=O(1).

Derandomized switching lemma

[Håstad'86]: Every CNF F: $\{0,1\}^n \rightarrow \{0,1\}$ of width $w \le O(\log(n))$ simplifies on almost all subcubes².

Goal: Sample subcubes from small set s.t. every width-w CNF simplifies on almost all subcubes from the set.

> [AW'85], [CR'96], [AAIPR'01], [TX'13], [GMR'13], [GMRTV'13], [GW'14], [Tal'17] ...

¹ to a decision tree of depth O(log(n))

² on 1-1/poly(n) of subcubes of dimension $\Omega(n/w)$

Derandomized switching lemma: results

> seed length for sampling a subcube

1. Trevisan and Xue '12 + Tal '17

+ Gopalan, Meka, Reingold '13: w·log²(n)

2. Goldreich and Wigderson '14: 2^w·log(n)

3. This work: $\mathbf{w}^2 \cdot \log(\mathbf{n})$

> ignoring second-order terms everywhere

Proof, step 1

> approximate F by a small CNF F'

> Gopalan, Meka and Reingold (2013)

Proof, step 2

> construct a simple deterministic test for F'

$$\Rightarrow$$
 T_{F'}(ρ)=1 iff **F' simplifies**¹ on subcube ρ

 \Rightarrow T_{F'} can be "fooled" using $\mathbf{w^2} \cdot \mathbf{log(n)}$ bits

- → Trevisan and Xue (2013)
- > Gopalan, Meka and Reingold (2013)
- 1 to a decision tree of depth O(log(n))

Proof, step 3: key challenge

- > F and F' close globally
- > We found subcubes on which F' simplifies
- > Is F close to a simplified function on these subcubes?
 - ⇒ are F and F' close in the subcubes that we found?

Proof, step 3: solution

> Choose subcubes from a distribution that:

```
\Rightarrow fools T_{F'} (\Rightarrow F' simplifies)
```

$$\Rightarrow$$
 fools test for $F_{\rho}^{\uparrow} \approx F_{\rho}^{\uparrow}$ ($\Rightarrow F_{\rho}^{\uparrow}$ and F_{ρ}^{\uparrow} are close)

- > Want a **simple test for F**\(\rangle \approx F'\)\(\rangle_\rangle \)
 - ⇒ randomized test will be useful here

Proof, step 3: randomized test for $F_0 \approx F'_0$

- \rightarrow Fix F,F':{0,1}ⁿ \rightarrow {0,1}, CNFs of width w
- \rightarrow For most subcubes ρ ,
- > Goal: Find subcube ρ with

$$Pr_{x \in \rho}[F(x)=F'(x)] > 1/n^{100}$$

 $Pr_{x \in 0}[F(x)=F'(x)] > 1/n^{90}$

deterministic test

evaluate F,F' on **2^(n/w)** points (entire subcube)

randomized test

evaluate F,F' on **poly(n)** random points in ρ

Proof, step 3: further improvements

- reducing the complexity of the randomized test
 - > Tests are $F(x_1)=F'(x_1) \land ... \land F(x_t)=F'(x_t)$
 - ⇒ naively: depth 4 circuit
 - For the specific construction of F'
 - ⇒ can get depth 3 circuit with bottom fan-in w
 - ⇒ test can be "fooled" with ≈ w log(n) bits

Quantified Derandomization

progress on other fronts

Quantified derandomization: more results

- > AC^o
- > **AC**⁰[⊕]
- > polys that vanish rarely
- > TC^O

[progress on ⊕∧⊕ circuits]

[error-reduction for polys]

[LTF circuits; in preparation]

Quantified derandomization of AC⁰[⊕]

- \rightarrow Threshold/barrier at depth 4 with B(n)=2 \land (n $^{\Omega(1)}$).
- > Fix $B(n)=2^{(n^{\Omega(1)})}$, derandomize **depth-3 circuits**.
 - ⇒ [GW'14]: all layered types but one
 - ⇒ this work: progress on the last type

Quantified derandomization of AC⁰[⊕]

> difficult case: XOR of AND/OR of XORs

Polynomials that vanish rarely

- \rightarrow Multivariate polynomials $F^n \rightarrow F$ over a finite field F.
- <u>Goal:</u> Fixing degree d, design HSG for degree-d polys that vanish on at most b(n) fraction of inputs.
- > Difference from circuits: Here we don't "know" the answer.*

Polynomials that vanish rarely: GF(q)

> **Thm** (this work): For d<q^{O(1)}, any HSG for degree-d polys with $b(n)=q^{-O(1)}$ requires seed length log($\binom{n+d'}{d'}$), where d'= $d^{\Omega(1)}$.

Polynomials that vanish rarely: GF(2)

> Thm [GW'14]: For any d, there is an explicit hitting-set generator with seed length O(log(n)) for $b(n)=O(2^{-d})$.

b(n)

Key takeaways

- 1. Randomized tests: useful general technique
- 2. New derandomized switching lemma
- 3. Improved bounds for quantified derandomization
 - > of AC⁰, AC⁰[⊕], TC⁰, and polynomials

Thank you!

⇒ randomized tests are useful ⇒ new derandomized switching lemma ⇒ improved bounds for quantified derandomization