Quantified Derandomization and

Randomized Tests

Roei Tell, Weizmann Institute of Science
CCC, July 2017

jarasfvaralinisl:

WEIZMANN INSTITUTE OF SCENCE P €%




The plan

1. Randomized tests
» a useful general technique
.. New derandomization results
» of AC®, ACP[e], TC® and polynomials

> using randomized tests



Randomized Tests
a useful general technique



Explicit constructions

Goal: Deterministically find object in dense set G.

y fixing a specific G € {O,1}" s.t. |G|>(1-¢) 2",
construct a deterministic alg. that finds x € G



Deterministic tests

prove (analysis):

» exists deterministic test T:{0,1}">{0,1} for G

» T is “very simple’, fooled by PRG

deterministic algorithm:

» enumerate output-set of PRG to find x€G




Randomized tests

» same approach works if T is randomized

prove (analysis):

» exists randomized test T:{0,1}">{0,1} for G

» T € supp(T) are “very simple”, fooled by PRG

deterministic algorithm:

» enumerate output-set of PRG to find x€G

» proof appears in the paper.



Randomized tests: the advantage

» Randomized test potentially much simpler than
any deterministic test

» Randomness “for free”, exists only in analysis

» Also works, e.g., if T distinguishes between

» excellent objects ECG
» bad objects G



Randomized tests: the advantage

» Randomized test potentially much simpler than
any deterministic test

» Randomness “for free”, exists only in analysis

» Also works, e.g., if T distinguishes between

» excellent objects ECG
» bad objects G




Randomized tests: an example

»  Fix £:{0,1}"+{0,1}, partition {O,1}" to large subsets
» Assume: For most subsets S in partition, ff =1

> Goal: Find subset S with Pr__[f(x)=1] > 0.99

deterministic test randomized test

evaluate f on |S]| points evaluate f on O(1) points




Randomized tests: digest

To find xEG:

» Construct randomized test for G
(or for relaxed problem)

» Randomness only in the analysis
(test can use randomness “for free”)

» Deterministic algorithm
enumerates output-set of PRG




Quantified Derandomization
the generic problem



Classical derandomization

» the standard one-sided error derandomization problem

Given a circuit C:{0,1}"—{0,1} from a circuit class C,
distinguish between the cases:

> C accepts most of its inputs

> Crejects all of its inputs



Quantified derandomization [GW14]

» the (€B) quantified derandomization problem

Given a circuit C:{0,1}"—{0,1} from a circuit class C,
distinguish between the cases:

» C accepts all but B(n) of its inputs

> Crejects all of its inputs



Quantified derandomization [GW14]

» the (€B) quantified derandomization problem

Given a circuit C:{0,1}"—{0,1} from a circuit class C,
distinguish between the cases:

» C accepts all but B(n) of its inputs

> Crejects all of its inputs

» what happens if B(n)=0? and if B(n)=2"/2?



Quantified derandomization [GW14]

Fix a circuit class €

o 2"[2

B(n)

» for now think E=P/poly
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Quantified derandomization [GW14]

Fix a circuit class €

o) 2A(n°0) 2"/4
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» for now think E=P/poly



The goal of quantified derandomization

To make the green and red cross and get
standard derandomization results.

o / \ 2"/[2
I

B(n)



A relaxed derandomization problem

» fixing a circuit class € what can we do?

construct a HSG
solve approximate counting (/2 vs O)

< solve quantified approx. counting (1-o(1) vs O )

» analogously: corresponding two-sided error problems



Quantified Derandomization of AC°

derandomized switching lemma
(using randomized tests)



ACP: touching the threshold

» circuits of constant depth D=0(1).

GW'14 this work this work,CL16,GW'14
27 (N999) 27(n/logP2(n)) 2a(n/logPCM(n))

0 T T/ 2"/2

B(n)



Derandomized switching lemma

[Hastad'86]: Every CNF F:{0,1}"»{0,1} of width
w < O(log(n)) simplifies' on almost all subcubes?.

Goal: Sample subcubes from small set s.t. every width-w
CNF simplifies on almost all subcubes from the set.

» [AW’85], [CR'96], [AAIPR'OT], [TX13], [GMR13], [CMRTV13], [CW'14], [Tal17] ...

1 to adecision tree of depth O(log(n))
2 on1-1/poly(n) of subcubes of dimension Q(n/w)



Derandomized switching lemma: results

y seed length for sampling a subcube

1. Trevisan and Xue 12 + Tal 17
+ Gopalan, Meka, Reingold 13: w-log?(n)

2. Goldreich and Wigderson 14: 2" -log(n)

3. This work: w?-log(n)

» ignoring second-order terms everywhere



Proof, step 1

» approximate F by a small CNF F

F:{0,1}"»{0,1}

width w

size < 2(")(w) -loglog(n)

F:{O0,1}">{O,1}

width w “1/poly(n)

e

» Gopalan, Meka and Reingold (2013)

» can actually get F to be lower- (or upper-) sandwiching



Proof, step 2

» construct a simple deterministic test for F

= T_(p)=1iff F simplifies' on subcube p

= T_ can be “fooled” using w?-log(n) bits

» Trevisan and Xue (2013)
» Gopalan, Meka and Reingold (2013)

1 to adecision tree of depth O(log(n))



Proof, step 3: key challenge

» Fand F close globally
» We found subcubes on which F simplifies
» Is F close to a simplified function on these subcubes?

= are F and F close in the subcubes that we found?



Proof, step 3: solution

»y Choose subcubes from a distribution that:

= fools T (= F simplifies)
= fools test for Frp = F’rp (= Frp and F’Pp are close)

» Want a simple test for Ft = F’rp

= randomized test will be useful here



Proof, step 3: randomized test for F'_= F'_

»  Fix F,F:{0,1}">{0,1}, CNFs of width w
»  For most subcubes p, Pr, < [F(X)=F'(x)] > 1/n'®®
> Goal: Find subcube pwith  Pr _ [F(x)=F'(x)] >1/n>°

deterministic test randomized test

evaluate F,F on 2("/wW) evaluate F,F on poly(n)
points (entire subcube) random pointsin p




Proof, step 3: further improvements

» reducing the complexity of the randomized test

» Testsare F(x)=F(x))A..AF(x)=F(x)
= naively: depth 4 circuit
» For the specific construction of F

= can get depth 3 circuit with bottom fan-in w

= test can be “fooled” with = w-log(n) bits

» using the specific construction of [CGMR13], which relies on [Rossman’14].



Quantified Derandomization
progress on other fronts



Quantified derandomization: more results

» AC° [] o )
» AC°[e] [ progress on @A@ circuits]
» polys that vanish rarely [ error-reduction for polys ]

» TCO [ LTF circuits; in preparation ]



Quantified derandomization of ACY[¢]

y Threshold/barrier at depth 4 with B(n)=2A(n")
y Fix B(n)=2A(n®M"), derandomize depth-3 circuits.

= [GW'4]: all layered types but one
= this work: progress on the last type



Quantified derandomization of ACY[¢]
» difficult case: XOR of AND/OR of XORs

» Solved only for various
sub-quadratic size bounds.

= reduce to const-deg polys
= affine restrictions ° A °
= whitebox approach 7 >

NN 2N 2N RN 2N Y




Polynomials that vanish rarely

> Multivariate polynomials F"—F over a finite field F.

» Goal: Fixing degree d, design HSG for degree-d polys that
vanish on at most b(n) fraction of inputs.

y Difference from circuits: Here we don’t “know” the answer.’

» no conditional complexity-theoretic results analogous to [IW'99,NW'94].



Polynomials that vanish rarely: GF(q)

» Thm (this work): For d<q®", any HSG for degree-d polys with
b(n)=g°" requires seed length log( (n;fI ) ), where d'=d®0.

trivial this work trivial
g q°®  d/qg

b(n)




Polynomials that vanish rarely: GF(2)

» Thm [GW'14]: For any d, there is an explicit hitting-set
generator with seed length O(log(n)) for b(n)=0(29).

trivial GW'4, this work trivial
24 c-2 1-2°
0 V. N\ 1

b(n)



Key takeaways

1. Randomized tests: useful general technique
.. New derandomized switching lemma

J. Improved bounds for quantified derandomization

» of AC®, ACP[e], TC®, and polynomials



Thank you!

= randomized tests are useful
= new derandomized switching lemma
= improved bounds for quantified derandomization



