
Quantified Derandomization and
Randomized Tests
Roei Tell, Weizmann Institute of Science
CCC, July 2017

The plan

 1. Randomized tests
 > a useful general technique

 2. New derandomization results
 > of AC0, AC0[⊕], TC0, and polynomials

 > using randomized tests

Randomized Tests
a useful general technique

Explicit constructions

Goal: Deterministically find object in dense set G.

> fixing a specific G ⊆ {0,1}n s.t. |G| > (1-ε)⋅2n,
 construct a deterministic alg. that finds x ∈ G

Deterministic tests

 > exists deterministic test T:{0,1}n→{0,1} for G

 > T is “very simple”, fooled by PRG

prove (analysis):

 > enumerate output-set of PRG to find x∈G
deterministic algorithm:

Randomized tests

 > exists randomized test T:{0,1}n→{0,1} for G

 > T ∈ supp(T) are “very simple”, fooled by PRG

prove (analysis):

 > enumerate output-set of PRG to find x∈G
deterministic algorithm:

> same approach works if T is randomized

> proof appears in the paper.

> Randomized test potentially much simpler than
any deterministic test

> Randomness “for free”, exists only in analysis

> Also works, e.g., if T distinguishes between

> excellent objects E ⊆ G
> bad objects ㄱG

Randomized tests: the advantage

> Randomized test potentially much simpler than
any deterministic test

> Randomness “for free”, exists only in analysis

> Also works, e.g., if T distinguishes between

> excellent objects E ⊆ G
> bad objects ㄱG

Randomized tests: the advantage

E ⊆ G ㄱG

Randomized tests: an example

deterministic test

evaluate f on |S| points

 > Fix f:{0,1}n→{0,1}, partition {0,1}n to large subsets

 > Assume: For most subsets S in partition, f↾S≡1

 > Goal: Find subset S with Prx∈S[f(x)=1] > 0.99

randomized test

evaluate f on O(1) points

Randomized tests: digest
To find x∈G:

> Construct randomized test for G
(or for relaxed problem)

> Randomness only in the analysis
(test can use randomness “for free”)

> Deterministic algorithm
enumerates output-set of PRG

Quantified Derandomization
the generic problem

Given a circuit C:{0,1}n➝{0,1} from a circuit class C,
distinguish between the cases:

> C accepts most of its inputs

> C rejects all of its inputs

Classical derandomization
> the standard one-sided error derandomization problem

Quantified derandomization [GW14]

Given a circuit C:{0,1}n➝{0,1} from a circuit class C,
distinguish between the cases:

> C accepts all but B(n) of its inputs

> C rejects all of its inputs

> the (C,B) quantified derandomization problem

Quantified derandomization [GW14]

Given a circuit C:{0,1}n➝{0,1} from a circuit class C,
distinguish between the cases:

> C accepts all but B(n) of its inputs

> C rejects all of its inputs

> the (C,B) quantified derandomization problem

> what happens if B(n)=0? and if B(n)=2n/2?

Quantified derandomization [GW14]

B(n)

0 2n/2

Fix a circuit class C.

> for now think C=P/poly

Quantified derandomization [GW14]

B(n)

0 2n/2
O(1) n5

Fix a circuit class C.

> for now think C=P/poly

Quantified derandomization [GW14]

B(n)

0 2n/2
O(1) n5 2n/42^(n.01)

Fix a circuit class C.

> for now think C=P/poly

The goal of quantified derandomization

B(n)

0 2n/2

To make the green and red cross and get
standard derandomization results.

A relaxed derandomization problem

construct a HSG

solve approximate counting (½ vs 0)

solve quantified approx. counting (1-o(1) vs 0)

> analogously: corresponding two-sided error problems

> fixing a circuit class C, what can we do?

Quantified Derandomization of AC0

derandomized switching lemma
(using randomized tests)

AC0: touching the threshold

B(n)

0 2n/2
2^(n/logD-2(n)) 2^(n/logD-O(1)(n))2^(n0.99)

GW’14 this work this work,CL’16,GW’14

> circuits of constant depth D=O(1).

> [AW’85], [CR’96], [AAIPR’01], [TX’13], [GMR’13], [GMRTV’13], [GW’14], [Tal’17] …

Derandomized switching lemma

Goal: Sample subcubes from small set s.t. every width-w
CNF simplifies on almost all subcubes from the set.

1 to a decision tree of depth O(log(n))
2 on 1-1/poly(n) of subcubes of dimension Ω(n/w)

[Håstad‘86]: Every CNF F:{0,1}n→{0,1} of width
w ≤ O(log(n)) simplifies1 on almost all subcubes2.

Derandomized switching lemma: results

1. Trevisan and Xue ‘12 + Tal ‘17
+ Gopalan, Meka, Reingold ‘13: w⋅log2(n)

2. Goldreich and Wigderson ‘14: 2w⋅log(n)

3. This work: w2⋅log(n)

> ignoring second-order terms everywhere

> seed length for sampling a subcube

Proof, step 1

F:{0,1}n→{0,1}

width w

F’:{0,1}n→{0,1}

width w

size ≤ 2Õ(w)⋅loglog(n)
≈1/poly(n)

> Gopalan, Meka and Reingold (2013)
> can actually get F’ to be lower- (or upper-) sandwiching

> approximate F by a small CNF F’

> Trevisan and Xue (2013)
> Gopalan, Meka and Reingold (2013)

Proof, step 2

⇒ TF’(ρ)=1 iff F’ simplifies1 on subcube ρ

⇒ TF’ can be “fooled” using w2⋅log(n) bits

1 to a decision tree of depth O(log(n))

> construct a simple deterministic test for F’

Proof, step 3: key challenge

 > F and F’ close globally

 > We found subcubes on which F’ simplifies

 > Is F close to a simplified function on these subcubes?

⇒ are F and F’ close in the subcubes that we found?

Proof, step 3: solution

 > Choose subcubes from a distribution that:

⇒ fools TF’ (⇒ F’ simplifies)

⇒ fools test for F↾ρ ≈ F’↾ρ (⇒ F↾ρ and F’↾ρ are close)

 > Want a simple test for F↾ρ ≈ F’↾ρ

⇒ randomized test will be useful here

Proof, step 3: randomized test for F↾ρ ≈ F’↾ρ
 > Fix F,F’:{0,1}n→{0,1}, CNFs of width w

 > For most subcubes ρ, Prx∈ρ[F(x)=F’(x)] > 1/n100

 > Goal: Find subcube ρ with Prx∈ρ[F(x)=F’(x)] > 1/n90

deterministic test

evaluate F,F’ on 2(n/w)
points (entire subcube)

randomized test

evaluate F,F’ on poly(n)
random points in ρ

Proof, step 3: further improvements

> using the specific construction of [GMR’13], which relies on [Rossman’14].

 > Tests are F(x1)=F’(x1) ⋀ … ⋀ F(xt)=F’(xt)
 ⇒ naively: depth 4 circuit

 > For the specific construction of F’
⇒ can get depth 3 circuit with bottom fan-in w

⇒ test can be “fooled” with ≈ w⋅log(n) bits

> reducing the complexity of the randomized test

Quantified Derandomization
progress on other fronts

> AC0 []

> AC0[⊕] [progress on ⊕⋀⊕ circuits]

> polys that vanish rarely [error-reduction for polys]

> TC0 [LTF circuits; in preparation]

Quantified derandomization: more results

Quantified derandomization of AC0[⊕]

> Threshold/barrier at depth 4 with B(n)=2^(nΩ(1)) .

> Fix B(n)=2^(nΩ(1)), derandomize depth-3 circuits.

⇒ [GW’14]: all layered types but one
 ⇒ this work: progress on the last type

Quantified derandomization of AC0[⊕]
> difficult case: XOR of AND/OR of XORs

⋀ ⋀⋀

> Solved only for various
sub-quadratic size bounds.

⇒ reduce to const-deg polys
⇒ affine restrictions
⇒ whitebox approach

> Multivariate polynomials Fn➝F over a finite field F.

> Goal: Fixing degree d, design HSG for degree-d polys that
vanish on at most b(n) fraction of inputs.

> Difference from circuits: Here we don’t “know” the answer.*

Polynomials that vanish rarely

> no conditional complexity-theoretic results analogous to [IW’99,NW’94].

Polynomials that vanish rarely: GF(q)

b(n)

0 1
trivial

q-d

trivial

d/q

q-O(1)

 > Thm (this work): For d<qO(1), any HSG for degree-d polys with
b(n)=q-O(1) requires seed length log(()), where d’=dΩ(1).n+d’

d’

this work

Polynomials that vanish rarely: GF(2)

 > Thm [GW’14]: For any d, there is an explicit hitting-set
 generator with seed length O(log(n)) for b(n)=O(2-d).

b(n)

0 1
trivial

2-d

c・2-d

trivial

1-2-d

GW’14, this work

Key takeaways

 1. Randomized tests: useful general technique

 2. New derandomized switching lemma

 3. Improved bounds for quantified derandomization

 > of AC0, AC0[⊕], TC0, and polynomials

Thank you!

⇒ randomized tests are useful
⇒ new derandomized switching lemma

⇒ improved bounds for quantified derandomization

