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The plan

   1.   Randomized tests
   >   a useful general technique

   2.   New derandomization results
   >   of AC0, AC0[⊕], TC0, and polynomials

   >   using randomized tests



Randomized Tests
a useful general technique



Explicit constructions

Goal: Deterministically find object in dense set G.

>   fixing a specific G ⊆ {0,1}n  s.t.   |G| > (1-ε)⋅2n,
 construct a deterministic alg. that finds x ∈ G



Deterministic tests

   >   exists deterministic test T:{0,1}n→{0,1} for G

   >   T is “very simple”, fooled by PRG

prove (analysis):

   >   enumerate output-set of PRG to find x∈G
deterministic algorithm:



Randomized tests

   >   exists randomized test T:{0,1}n→{0,1} for G

   >   T ∈ supp(T) are “very simple”, fooled by PRG

prove (analysis):

   >   enumerate output-set of PRG to find x∈G
deterministic algorithm:

>   same approach works if T is randomized

>   proof appears in the paper.



>   Randomized test potentially much simpler than
any deterministic test

>   Randomness “for free”, exists only in analysis

>   Also works, e.g., if T distinguishes between

>   excellent objects E ⊆ G
>   bad objects ㄱG

Randomized tests: the advantage



>   Randomized test potentially much simpler than
any deterministic test

>   Randomness “for free”, exists only in analysis
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>   bad objects ㄱG

Randomized tests: the advantage

E ⊆ G ㄱG



Randomized tests: an example

deterministic test

evaluate f on |S| points

   > Fix f:{0,1}n→{0,1}, partition {0,1}n to large subsets

   > Assume: For most subsets S in partition, f↾S≡1

   > Goal: Find subset S with Prx∈S[f(x)=1] > 0.99

randomized test

evaluate f on O(1) points



Randomized tests: digest
To find x∈G:

>   Construct randomized test for G 
(or for relaxed problem)

>   Randomness only in the analysis 
(test can use randomness “for free”)

>   Deterministic algorithm 
enumerates output-set of PRG



Quantified Derandomization
the generic problem



Given a circuit C:{0,1}n➝{0,1} from a circuit class C, 
distinguish between the cases:

>   C accepts most of its inputs

>   C rejects all of its inputs

Classical derandomization
>   the standard one-sided error derandomization problem



Quantified derandomization [GW14]

Given a circuit C:{0,1}n➝{0,1} from a circuit class C, 
distinguish between the cases:

>   C accepts all but B(n) of its inputs

>   C rejects all of its inputs

>   the (C,B) quantified derandomization problem



Quantified derandomization [GW14]

Given a circuit C:{0,1}n➝{0,1} from a circuit class C, 
distinguish between the cases:

>   C accepts all but B(n) of its inputs

>   C rejects all of its inputs

>   the (C,B) quantified derandomization problem

>   what happens if B(n)=0? and if B(n)=2n/2?



Quantified derandomization [GW14]

B(n)

0 2n/2

Fix a circuit class C.

>   for now think C=P/poly



Quantified derandomization [GW14]

B(n)
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O(1) n5

Fix a circuit class C.

>   for now think C=P/poly



Quantified derandomization [GW14]

B(n)

0 2n/2
O(1) n5 2n/42^(n.01)

Fix a circuit class C.

>   for now think C=P/poly



The goal of quantified derandomization

B(n)

0 2n/2

To make the green and red cross and get
standard derandomization results.



A relaxed derandomization problem

construct a HSG

solve approximate counting ( ½ vs 0 )

solve quantified approx. counting ( 1-o(1) vs 0 )

>   analogously: corresponding two-sided error problems

>   fixing a circuit class C, what can we do?



Quantified Derandomization of AC0

derandomized switching lemma 
(using randomized tests)



AC0: touching the threshold

B(n)

0 2n/2
2^(n/logD-2(n)) 2^(n/logD-O(1)(n))2^(n0.99)

GW’14 this work this work,CL’16,GW’14

>   circuits of constant depth D=O(1).



>  [AW’85], [CR’96], [AAIPR’01], [TX’13], [GMR’13], [GMRTV’13], [GW’14], [Tal’17] …

Derandomized switching lemma

Goal: Sample subcubes from small set s.t. every width-w
CNF simplifies on almost all subcubes from the set.

1    to a decision tree of depth O(log(n))
2   on 1-1/poly(n) of subcubes of dimension Ω(n/w)

[Håstad‘86]: Every CNF F:{0,1}n→{0,1} of width 
w ≤ O(log(n)) simplifies1 on almost all subcubes2.



Derandomized switching lemma: results
 

1. Trevisan and Xue ‘12 + Tal ‘17 
+ Gopalan, Meka, Reingold ‘13: w⋅log2(n)

2. Goldreich and Wigderson ‘14:   2w⋅log(n)

3. This work: w2⋅log(n)

>   ignoring second-order terms everywhere

>   seed length for sampling a subcube



Proof, step 1

F:{0,1}n→{0,1}

width w

F’:{0,1}n→{0,1}

width w

size ≤ 2Õ(w)⋅loglog(n) 
≈1/poly(n)

>  Gopalan, Meka and Reingold (2013)
>   can actually get F’ to be lower- (or upper-) sandwiching

>   approximate F by a small CNF F’



>  Trevisan and Xue (2013)
>  Gopalan, Meka and Reingold (2013)

Proof, step 2

⇒ TF’(ρ)=1 iff F’ simplifies1 on subcube ρ

⇒ TF’ can be “fooled” using w2⋅log(n) bits

1    to a decision tree of depth O(log(n))

>   construct a simple deterministic test for F’



Proof, step 3: key challenge

  >  F and F’ close globally

  >  We found subcubes on which F’ simplifies

  >  Is F close to a simplified function on these subcubes?

⇒ are F and F’ close in the subcubes that we found?



Proof, step 3: solution

  >  Choose subcubes from a distribution that:

⇒  fools TF’ ( ⇒ F’ simplifies)

⇒  fools test for F↾ρ ≈ F’↾ρ ( ⇒ F↾ρ and F’↾ρ are close)

  >   Want a simple test for F↾ρ ≈ F’↾ρ 

⇒  randomized test will be useful here



Proof, step 3: randomized test for F↾ρ ≈ F’↾ρ
   > Fix F,F’:{0,1}n→{0,1}, CNFs of width w

   > For most subcubes ρ, Prx∈ρ[F(x)=F’(x)] > 1/n100

   > Goal: Find subcube ρ with Prx∈ρ[F(x)=F’(x)] > 1/n90

deterministic test 

evaluate F,F’ on 2(n/w) 
points (entire subcube)

randomized test

evaluate F,F’ on poly(n) 
random points in ρ



Proof, step 3: further improvements

>   using the specific construction of [GMR’13], which relies on [Rossman’14].

   > Tests are   F(x1)=F’(x1) ⋀ … ⋀ F(xt)=F’(xt)
  ⇒ naively: depth 4 circuit

   > For the specific construction of F’
⇒ can get depth 3 circuit with bottom fan-in w

⇒ test can be “fooled” with ≈ w⋅log(n) bits

>   reducing the complexity of the randomized test



Quantified Derandomization
progress on other fronts



>  AC0 [                                     ]

>  AC0[⊕] [ progress on ⊕⋀⊕ circuits]

>  polys that vanish rarely [ error-reduction for polys ]

>  TC0 [ LTF circuits; in preparation ]

Quantified derandomization: more results



Quantified derandomization of AC0[⊕]

>  Threshold/barrier at depth 4 with B(n)=2^(nΩ(1)) .

>  Fix B(n)=2^(nΩ(1)), derandomize depth-3 circuits.

⇒ [GW’14]: all layered types but one
 ⇒ this work: progress on the last type



Quantified derandomization of AC0[⊕]
>   difficult case: XOR of AND/OR of XORs

⋀ ⋀⋀

>  Solved only for various 
sub-quadratic size bounds.

⇒ reduce to const-deg polys
⇒ affine restrictions
⇒ whitebox approach



>  Multivariate polynomials Fn➝F over a finite field F.

>  Goal: Fixing degree d, design HSG for degree-d polys that 
vanish on at most b(n) fraction of inputs.

>  Difference from circuits: Here we don’t “know” the answer.*

Polynomials that vanish rarely

>   no conditional complexity-theoretic results analogous to [IW’99,NW’94].



Polynomials that vanish rarely: GF(q)

b(n)

0 1
trivial

q-d

trivial

d/q
 

q-O(1)

   >   Thm (this work): For d<qO(1), any HSG for degree-d polys with 
b(n)=q-O(1) requires seed length log(  (      ) ), where d’=dΩ(1).n+d’

d’

this work



Polynomials that vanish rarely: GF(2)

   >   Thm [GW’14]: For any d, there is an explicit hitting-set
 generator with seed length O(log(n)) for b(n)=O(2-d).

b(n)

0 1
trivial

2-d

 

c・2-d

trivial

1-2-d

GW’14, this work



Key takeaways

   1.   Randomized tests: useful general technique

   2.   New derandomized switching lemma

   3.   Improved bounds for quantified derandomization

   >   of AC0, AC0[⊕], TC0, and polynomials



Thank you!

⇒ randomized tests are useful
⇒ new derandomized switching lemma

⇒ improved bounds for quantified derandomization


