
Polynomials, quantum query complexity,
and Grothendieck’s inequality

Scott Aaronson1, Andris Ambainis2, Jānis Iraids2, Martins Kokainis2,
Juris Smotrovs2

1Computer Science and Artificial Intelligence Laboratory, MIT

2Faculty of Computing, University of Latvia

CCC 2016

Query model

Function f (x1, x2, . . . , xn), xi ∈ {0, 1}.

xi given by a black box:

i −→ −→ xi

Complexity = number of queries.

Quantum query model

|0〉

U0

OX

U1

OX

. . .

OX

UT

|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .
|0〉 . . .

U0, U1, . . . , UT , independent of x1, . . . , xn.

OX – query operators:∑
i

ai |i〉
OX−→

∑
i

ai (−1)xi |i〉

Qε(f) – minimum number of queries in a quantum algorithm
computing f correctly with probability ≥ 1− ε.

Quantum algorithms that
make T queries

=⇒
[BBCMW01]

Multilinear polynomials of
degree 2T

Lower bounds on quantum query complexity

OR: no polynomial of degree o(
√
n) approximating OR [NS94], thus no

quantum algorithm making o(
√
n) queries.

Collision problem, element distinctness problem, . . .

The obtained bounds can be asymptotically lower than Qε(f).

Multilinear polynomials of
degree d

=⇒
[BBCMW01]

Quantum algorithms that
make O(d6) queries

A multilinear polynomial of
degree d

&
[ABK16]

Quantum algorithms make
Ω̃(d4) queries

Quantum algorithms that
make T queries

=⇒

⇐=
??

Multilinear polynomials of
degree 2T

Quantum algorithms that
make T queries

=⇒

⇐=
??

Multilinear polynomials of
degree 2T

This work:

Quantum algorithms that
make 1 query ⇐⇒

Multilinear polynomials of
degree 2

Recently shown [AA15]:

A task that requires 1 query quantumly and Θ(
√
n) queries classically.

Any quantum algorithm which makes 1 query can be simulated by a
probabilistic algorithm making O(

√
n) queries.

Multilinear polynomials

A multilinear polynomial p : Rn → R represents
f : (X ⊂ {−1, 1}n)→ {0, 1} with error δ ∈ [0; 0.5) if

x ∈ X , f (x) = 0 ⇒ p(x) ∈ [0; δ];

x ∈ X , f (x) = 1 ⇒ p(x) ∈ [1− δ; 1];

p(x) ∈ [0; 1] for all x ∈ {−1, 1}n.

Block-multilinear polynomials

A block-multilinear polynomial q : Rd(n+1) → R of degree d

q(x (1), . . . , x (d)) =
∑

i1,i2,...,id=0...n

ai1i2...id x
(1)
i1

x
(2)
i2
. . . x

(d)
id
, x (j) ∈ Rn+1,

represents f : (X ⊂ {−1, 1}n)→ {0, 1} with error δ ∈ [0; 0.5) if

x ∈ X , f (x) = 0 ⇒ q(x̃ , x̃ , . . . , x̃) ∈ [0; δ], x̃ := (1, x);

x ∈ X , f (x) = 1 ⇒ q(x̃ , x̃ , . . . , x̃) ∈ [1− δ; 1], x̃ := (1, x);

q(x (1), . . . , x (d)) ∈ [−1; 1] for all x (1), . . . , x (d) ∈ {−1, 1}n+1.

Example

Consider NAE (x1, x2, x3) = ¬(x1 = x2 = x3).
Ordinary exact representation:

p(x1, x2, x3) =
3− x1x2 − x1x3 − x2x3

4

Block-multilinear exact representation:

q(x0, . . . , x3, y0, . . . , y3) =
2x0y0 − x1y2 − x1y3 − x3y2 + x3y3

4

Notice that setting x0 = y0 = 1 and xi = yi yields

q(1, x1, x2, x3, 1, x1, x2, x3) = p(x1, x2, x3).

From quantum algorithms to polynomials

d̃egε(f): the minimum degree of a polynomial p representing f with
error ε;

b̃mdegε(f): the minimum degree of a block-multilinear polynomial q
representing f with error ε.

Theorem ([BBCMW01])

Qε(f) ≥ 2d̃egε(f)

Theorem ([AA15])

Qε(f) ≥ 2b̃mdegε(f)

Theorem

Qε(f) = 1 for some ε < 0.5 ⇔ d̃egδ(f) = 2 for some δ < 0.5

Sketch of the proof

1 From a multilinear polynomial p to a block-multilinear polynomial q.

2 By splitting variables from q to a block-multilinear polynomial q′.

3 A quantum algorithm which estimates q′ by making a single query.

Estimating a polynomial with a quantum algorithm

A block-multilinear polynomial q of degree 2:

q(x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

n∑
j=1

aijxiyj .

Let A = (aij) and suppose U = n · A is unitary.

One can prepare with a single query each of the states

|Ψx〉 =
1√
n

n∑
i=1

xi |i〉 , |Ψy 〉 =
1√
n

n∑
j=1

yj |j〉 ,

thus with a single query it is possible to estimate

〈Ψx |U|Ψy 〉 = q(x1, . . . , xn, y1, . . . , yn).

Still works if ‖U‖ ≤ C .

Preprocessing a block-multilinear polynomial

Have: |q| ≤ 1, i.e.,

max
x ,y∈{−1,1}n

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aijxiyj

∣∣∣∣∣∣ ≤ 1 or ‖A‖∞→1 ≤ 1.

Need: n ‖A‖ ≤ C .

Solution: variable splitting.

A variable xi can be replaced by new variables xi1 , . . . , xik as follows:

xi −→
xi1 + xi2 + . . .+ xik

k
.

Preprocessing a block-multilinear polynomial

Have: |q| ≤ 1, i.e.,

max
x ,y∈{−1,1}n

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aijxiyj

∣∣∣∣∣∣ ≤ 1 or ‖A‖∞→1 ≤ 1.

Need: n ‖A‖ ≤ C .

Solution: variable splitting.

A variable xi can be replaced by new variables xi1 , . . . , xik as follows:

xi −→
xi1 + xi2 + . . .+ xik

k
.

Another block-multilinear polynomial q′ is obtained with a coefficient
matrix A′ of size n′ ×m′.

Still |q′| ≤ 1 or ‖A′‖∞→1 ≤ 1.

Can we achieve
√
n′m′ ‖A′‖ ≤ C?

Another block-multilinear polynomial q′ is obtained with a coefficient
matrix A′ of size n′ ×m′.

Still |q′| ≤ 1 or ‖A′‖∞→1 ≤ 1.

Can we achieve
√
n′m′ ‖A′‖ ≤ C?

Claim

For each δ > 0 it is possible to split variables so that the obtained matrix
A′ satisfies √

n′m′
∥∥A′∥∥ ≤ K + δ,

where K < 1.7823 – Groethendieck’s constant.

Key idea: splitting variables is equivalent to factorizing the matrix A.

Splitting variables ≡ splitting rows/columns of A

Splitting a variable xi into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

Let q = 1
2 (x1y1 + x2y1 + x1y2 − x2y2), then A =

(
0.5 0.5
0.5 −0.5

)
.

Replacing x2 with
x ′2+x ′3+x ′4

3 corresponds to . . .
. . . replacing A with

A′ =



1
2

1
2

1
6 −1

6

1
6 −1

6

1
6 −1

6

 .

Splitting variables ≡ splitting rows/columns of A

Splitting a variable xi into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

Let q = 1
2 (x1y1 + x2y1 + x1y2 − x2y2), then A =

(
0.5 0.5
0.5 −0.5

)
.

Replacing x2 with
x ′2+x ′3+x ′4

3 corresponds to . . .
. . . replacing A with

A′ =



1
2

1
2

1
6 −1

6

1
6 −1

6

1
6 −1

6

 .

Splitting variables ≡ splitting rows/columns of A

Splitting a variable xi into k new variables corresponds to splitting the
ith row of A into k equal rows.

Example

Let q = 1
2 (x1y1 + x2y1 + x1y2 − x2y2), then A =

(
0.5 0.5
0.5 −0.5

)
.

Replacing x2 with
x ′2+x ′3+x ′4

3 corresponds to . . .
. . . replacing A with

A′ =



1
2

1
2

1
6 −1

6

1
6 −1

6

1
6 −1

6

 .

Suppose that A is of size n ×m and its

1st row is split into k1 rows,

2nd row – into k2 rows,

. . .

nth row – into kn rows,

obtaining A′ of size n′ ×m′.

Clearly, m′ = m, n′ = k1 + k2 + . . .+ kn.

What about ‖A′‖?

We have ‖A′‖ = ‖B‖, where

B =



a11√
k1

a12√
k1

. . . a1m√
k1

a21√
k2

a22√
k2

. . . a2m√
k2

. . .

an1√
kn

an2√
kn

. . . anm√
kn


Consequently, ∥∥A′∥∥√n′m′ = ‖B‖ ‖w‖ ‖v‖ ,

where w = (
√
k1, . . . ,

√
kn), v = (1, . . . , 1).

Splitting rows/columns ≡ factorizing A

Let A be of size n ×m and C > 0.

Claim:

∃B ∈ Rn×m and w ∈ Rn
+, v ∈ Rm

+:

aij = wibijvj , ∀i , j ,

w2
i , v

2
j ∈ Q, ∀i , j ,

‖B‖ ‖w‖ ‖v‖ = C

⇐⇒

∃A′ ∈ Rn′×m′
:

A −→ A′,

‖A′‖
√
n′m′ = C

Splitting rows/columns ≡ factorizing A

Let A be of size n ×m and C > 0.

Claim:

∃B ∈ Rn×m and w ∈ Rn
+, v ∈ Rm

+:

aij = wibijvj , ∀i , j ,

w2
i , v

2
j ∈ Q, ∀i , j ,

‖B‖ ‖w‖ ‖v‖ = C

=⇒

∀δ > 0 ∃A′ ∈ Rn′×m′
:

A −→ A′,

‖A′‖
√
n′m′ = C+δ

Grothendieck’s Inequality: I

Suppose that

A is a n ×m matrix with real components;

H is an arbitrary Hilbert space;

x1, . . . , xn, y1, . . . , ym ∈ H are of norm at most 1.

Then ∣∣∣∣∣∣
n∑

i=1

m∑
j=1

aij 〈xi , yj〉

∣∣∣∣∣∣ ≤ K ‖A‖∞→1 ,

where

‖A‖∞→1 = max
x∈{−1,1}n
y∈{−1,1}m

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

aijxiyj

∣∣∣∣∣∣ .

Grothendieck’s Inequality: II

Suppose that A is a n× n matrix. Then the following are equivalent:

1 for each H and all xi , yj ∈ H (of norm ≤ 1), i , j ∈ [n],∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aij 〈xi , yj〉

∣∣∣∣∣∣ ≤ 1;

2 there is an n × n matrix B and vectors w , v ∈ Rn
+, s.t.

‖w‖ = ‖v‖ = 1;

‖B‖ ≤ 1;

wibijvj = aij for all i , j .

Putting everything together

Since ‖A‖∞→1 ≤ 1, there is a matrix B and vectors w , v s.t.

‖w‖ = ‖v‖ = 1, ‖B‖ ≤ K and wibijvj = aij for all i , j .

Then we can split variables so that the obtained matrix A′ satisfies
‖A′‖

√
n′m′ ≤ K + δ, for every δ > 0.

Therefore there is a 1-query quantum algorithm which estimates q′

(the polynomial corresponding to A′),

thus evaluating the polynomial q.

d̃eg = 2⇒ b̃mdeg = 2

Claim

Suppose that
p : Rn → R is a multilinear polynomial of degree 2,
|p(x)| ≤ 1 for each x ∈ {−1, 1}n.

Then there exists a block-multilinear polynomial g : R2n+2 → R s.t.
deg g = 2,
g(x̃ , x̃) = 1

3p(x), x̃ := (1, x), for each x ∈ {−1, 1}n,

|g(z)| ≤ 1 for each z ∈ {−1, 1}2n+2.

From polynomials to block-multilinear polynomials

Claim

Suppose that
p : Rn → R is a multilinear polynomial of degree d,
|p(x)| ≤ 1 for each x ∈ {−1, 1}n.

Then there exists a block-multilinear polynomial g : Rd(n+1) → R s.t.
deg g = d,
g(x̃ , . . . , x̃) = p(x) for each x ∈ {−1, 1}n, x̃ := (1, x);

|g(z)| ≤ Cd = O(3.5911...d) for each z ∈ {−1, 1}d(n+1).

Key ideas:

1 replace each monomial with its symmetric block-multilinear version
(average over all the ways how one could use one term per block),
e.g.,

x1x2 . . . xr −→
1(d
r

)
r !

∑
B⊂[d]:
|B|=r

∑
b:

b:[r]→B
b – bijection

x
(b(1))
1 x

(b(2))
2 . . . x

(b(r))
r .

2 Apply the polarization identity to show the boundedness of g :

d!F
(
u(1), u(2), . . . , u(d)

)
=
∑
T⊂[d]
T 6=∅

(−1)d−|T |f

∑
j∈T

u(j)

 ,

where f (x) := F (x , x , . . . , x) and F : Ed → R is a d-linear and
symmetric map.

Corollary: solution of an open problem from [AA15].

Claim

Let g : Rn → R be a multilinear polynomial of degree d with |g(y)| ≤ 1
for any y ∈ {−1, 1}n. Then g(y) can be approximated within precision ±ε
whp by querying O((n

ε2)1−1/d)) variables (with a big-O constant
depending on d).

The same result (and transformation of ordinary multilinear
polynomials to block-multilinear ones) has been independently shown
by O’Donnell and Zhao by means of decoupling theory.

Separation between Q and bmdeg

Q and bmdeg are not equivalent: there is a function exhibiting a
quadratic separation between both measures.

Theorem

There exists f with Qε(f) = Ω̃(bmdeg2
0(f)).

Recently [ABK16] an analogous result for Qε and deg0 using the
cheat sheet framework.

We show that the same function provides the separation between Qε

and bmdeg0.

? Characterize quantum algorithms with 2, 3, ..., queries?

? 2 queries ≡ polynomials of degree 4?

Thank you for your attention!

? Characterize quantum algorithms with 2, 3, ..., queries?

? 2 queries ≡ polynomials of degree 4?

Thank you for your attention!

